Decadal Variation of the Southwest U.S. Summer Monsoon Circulation and Rainfall in a Regional Model

Qi Hu Climate and Bio-atmospheric Sciences Group, School of Natural Resources, and Department of Geosciences, University of Nebraska at Lincoln, Lincoln, Nebraska

Search for other papers by Qi Hu in
Current site
Google Scholar
PubMed
Close
and
Song Feng Climate and Bio-atmospheric Sciences Group, School of Natural Resources, and Department of Geosciences, University of Nebraska at Lincoln, Lincoln, Nebraska

Search for other papers by Song Feng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have identified several major causes for summer rainfall variations over the southwest United States, for example, land memory (i.e., relationships between antecedent winter season precipitation and snow cover anomalies and subsequent summer rainfall anomalies over the southwest United States; these anomalies are likely most important in the northwest United States, although antecedent anomalies in the southwest United States also may be important in determining summer rainfall variations) and sea surface temperature (SST) anomalies in the North Pacific. Atmospheric responses to these “boundary forces” interact with moisture flows from the Gulf of Mexico and from the Gulf of California to influence the rainfall in the Southwest. The land memory and the SST effects were further found to be “naturally separated,” in the sense that they each played a dominant role influencing the monsoon rainfall variation during different periods of the last century. This separation was also manifested by different dominant low-level moisture transport anomalies in those periods. Several new questions have arisen from these findings: How have the land memory and the SST effects been “separated,” so as to affect the monsoon rainfall variations during different periods, or “regimes”? And, what are the corresponding changes of low-level flows, and hence moisture transports into the southwest United States that help achieve the land memory or the SST effects on the rainfall variations during these different regimes? These questions, and related issues, are addressed using a numerical model of regional climate. The model was used to simulate 14 individual warm seasons (April–October) in each of the postulated regimes. Analyses of the simulation results showed systematic and significant changes in atmospheric circulation anomalies between the two regimes. In the early regime (1961–90), when the land memory effect was strong, the average geopotential height was lower and storm activity was more intense over the central and western United States than in the more recent regime (from 1990 on), indicating reduced eddy energy and momentum exchanges between high and low latitudes in the western United States. The effects of these changes on the monsoon rainfall were achieved by very different low-level flow and moisture transport anomalies. In the earlier regime, low-level flow and moisture transport anomalies in the southwest United States were primarily due to easterlies and southeasterlies into the Southwest for its wet monsoon conditions, with reversed anomalies for dry conditions. In the recent regime, these anomalies changed, with primarily southerlies and southwesterlies from the Gulf of California into the Southwest during its wet monsoon conditions, and reversed flow anomalies for dry conditions. These changes indicate that different physical processes, including those responsible for the planetary-scale atmospheric circulation, led to monsoon rainfall variations during each of these regimes.

Corresponding author address: Dr. Qi Hu, University of Nebraska at Lincoln, 707 Hardin Hall, Lincoln, NE 68583-0987. Email: qhu2@unl.edu

Abstract

Previous studies have identified several major causes for summer rainfall variations over the southwest United States, for example, land memory (i.e., relationships between antecedent winter season precipitation and snow cover anomalies and subsequent summer rainfall anomalies over the southwest United States; these anomalies are likely most important in the northwest United States, although antecedent anomalies in the southwest United States also may be important in determining summer rainfall variations) and sea surface temperature (SST) anomalies in the North Pacific. Atmospheric responses to these “boundary forces” interact with moisture flows from the Gulf of Mexico and from the Gulf of California to influence the rainfall in the Southwest. The land memory and the SST effects were further found to be “naturally separated,” in the sense that they each played a dominant role influencing the monsoon rainfall variation during different periods of the last century. This separation was also manifested by different dominant low-level moisture transport anomalies in those periods. Several new questions have arisen from these findings: How have the land memory and the SST effects been “separated,” so as to affect the monsoon rainfall variations during different periods, or “regimes”? And, what are the corresponding changes of low-level flows, and hence moisture transports into the southwest United States that help achieve the land memory or the SST effects on the rainfall variations during these different regimes? These questions, and related issues, are addressed using a numerical model of regional climate. The model was used to simulate 14 individual warm seasons (April–October) in each of the postulated regimes. Analyses of the simulation results showed systematic and significant changes in atmospheric circulation anomalies between the two regimes. In the early regime (1961–90), when the land memory effect was strong, the average geopotential height was lower and storm activity was more intense over the central and western United States than in the more recent regime (from 1990 on), indicating reduced eddy energy and momentum exchanges between high and low latitudes in the western United States. The effects of these changes on the monsoon rainfall were achieved by very different low-level flow and moisture transport anomalies. In the earlier regime, low-level flow and moisture transport anomalies in the southwest United States were primarily due to easterlies and southeasterlies into the Southwest for its wet monsoon conditions, with reversed anomalies for dry conditions. In the recent regime, these anomalies changed, with primarily southerlies and southwesterlies from the Gulf of California into the Southwest during its wet monsoon conditions, and reversed flow anomalies for dry conditions. These changes indicate that different physical processes, including those responsible for the planetary-scale atmospheric circulation, led to monsoon rainfall variations during each of these regimes.

Corresponding author address: Dr. Qi Hu, University of Nebraska at Lincoln, 707 Hardin Hall, Lincoln, NE 68583-0987. Email: qhu2@unl.edu

Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Anderson, B. T., J. O. Roads, and S. C. Chen, 2000: Large scale forcing of summertime monsoon surges over the Gulf of California and southwestern United States. J. Geophys. Res., 105 , 2445524467.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14 , 121137.

  • Carleton, A. M., D. A. Carpenter, and P. J. Weser, 1990: Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J. Climate, 3 , 9991015.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. McKee, and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14 , 44494473.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101D , 72517268.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., 1995: The summertime low level jet over the Gulf of California. Mon. Wea. Rev., 123 , 23342347.

  • Douglas, M. W., R. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6 , 16651667.

  • Gochis, D. J., W. J. Shuttleworth, and Z. L. Yang, 2003: Hydrometeorological response of modeled North American monsoon to convective parameterization. J. Hydrometeor., 4 , 235250.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-3801+STR, 138 pp.

  • Gutzler, D. S., 2000: Covariability of spring snowpack and summer rainfall across the southwest United States. J. Climate, 13 , 40184027.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and J. W. Preston, 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24 , 22072210.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and Coauthors, 2005: The North American Monsoon Model Assessment Project: Integrating numerical modeling into a field-based process study. Bull. Amer. Meteor. Soc., 86 , 14231429.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100 , 298306.

  • Harnik, N., and E. K. M. Chang, 2003: Storm track variations as seen in radiosonde observations and reanalysis data. J. Climate, 16 , 480495.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13 , 759775.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15 , 11891202.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2004a: A role of the soil enthalpy in land memory. J. Climate, 17 , 36323642.

  • Hu, Q., and S. Feng, 2004b: Why has the land memory changed? J. Climate, 17 , 32363243.

  • Kain, J. S., and M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Mo, K. C., and H. M. H. Juang, 2003: Influence of sea surface temperature anomalies in the Gulf of California on North American monsoon rainfall. J. Geophys. Res., 108 .4112, doi:10.1029/2002JD002403.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95 , 403426.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7 , 929948.

  • Ropelewski, C. F., D. S. Gutzler, R. W. Higgins, and C. R. Mechoso, 2005: The North American monsoon system. The Global Monsoon System: Research and Forecast, World Meteorological Organization Tech. Doc. 1266, 207–218.

  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9 , 16211634.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, and M. K. Nordquist, 1997: Surge over the Gulf of California during the Mexico monsoon. Mon. Wea. Rev., 125 , 417437.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1650 1442 72
PDF Downloads 192 66 7