The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis

Jia-Lin Lin NOAA/ESRL/CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Jia-Lin Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the double–intertropical convergence zone (ITCZ) problem in the coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The twentieth-century climate simulations of 22 IPCC AR4 CGCMs are analyzed, together with the available Atmospheric Model Intercomparison Project (AMIP) runs from 12 of them. To understand the physical mechanisms for the double-ITCZ problem, the main ocean–atmosphere feedbacks, including the zonal sea surface temperature (SST) gradient–trade wind feedback (or Bjerknes feedback), the SST–surface latent heat flux (LHF) feedback, and the SST–surface shortwave flux (SWF) feedback, are studied in detail.

The results show that most of the current state-of-the-art CGCMs have some degree of the double-ITCZ problem, which is characterized by excessive precipitation over much of the Tropics (e.g., Northern Hemisphere ITCZ, South Pacific convergence zone, Maritime Continent, and equatorial Indian Ocean), and are often associated with insufficient precipitation over the equatorial Pacific. The excessive precipitation over much of the Tropics usually causes overly strong trade winds, excessive LHF, and insufficient SWF, leading to significant cold SST bias in much of the tropical oceans. Most of the models also simulate insufficient latitudinal asymmetry in precipitation and SST over the eastern Pacific and Atlantic Oceans.

The AMIP runs also produce excessive precipitation over much of the Tropics, including the equatorial Pacific, which also leads to overly strong trade winds, excessive LHF, and insufficient SWF. This suggests that the excessive tropical precipitation is an intrinsic error of the atmospheric models, and that the insufficient equatorial Pacific precipitation in the coupled runs of many models comes from ocean–atmosphere feedback. Feedback analysis demonstrates that the insufficient equatorial Pacific precipitation in different models is associated with one or more of the following three biases in ocean–atmosphere feedback over the equatorial Pacific: 1) excessive Bjerknes feedback, which is caused by excessive sensitivity of precipitation to SST and overly strong time-mean surface wind speed; 2) overly positive SST–LHF feedback, which is caused by excessive sensitivity of surface air humidity to SST; and 3) insufficient SST–SWF feedback, which is caused by insufficient sensitivity of cloud amount to precipitation. Off the equator over the eastern Pacific stratus region, most of the models produce insufficient stratus–SST feedback associated with insufficient sensitivity of stratus cloud amount to SST, which may contribute to the insufficient latitudinal asymmetry of SST in their coupled runs. These results suggest that the double-ITCZ problem in CGCMs may be alleviated by reducing the excessive tropical precipitation and the above feedback-relevant errors in the atmospheric models.

Corresponding author address: Dr. Jia-Lin Lin, NOAA/ESRL/CIRES Climate Diagnostics Center, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. Email: jialin.lin@noaa.gov

Abstract

This study examines the double–intertropical convergence zone (ITCZ) problem in the coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The twentieth-century climate simulations of 22 IPCC AR4 CGCMs are analyzed, together with the available Atmospheric Model Intercomparison Project (AMIP) runs from 12 of them. To understand the physical mechanisms for the double-ITCZ problem, the main ocean–atmosphere feedbacks, including the zonal sea surface temperature (SST) gradient–trade wind feedback (or Bjerknes feedback), the SST–surface latent heat flux (LHF) feedback, and the SST–surface shortwave flux (SWF) feedback, are studied in detail.

The results show that most of the current state-of-the-art CGCMs have some degree of the double-ITCZ problem, which is characterized by excessive precipitation over much of the Tropics (e.g., Northern Hemisphere ITCZ, South Pacific convergence zone, Maritime Continent, and equatorial Indian Ocean), and are often associated with insufficient precipitation over the equatorial Pacific. The excessive precipitation over much of the Tropics usually causes overly strong trade winds, excessive LHF, and insufficient SWF, leading to significant cold SST bias in much of the tropical oceans. Most of the models also simulate insufficient latitudinal asymmetry in precipitation and SST over the eastern Pacific and Atlantic Oceans.

The AMIP runs also produce excessive precipitation over much of the Tropics, including the equatorial Pacific, which also leads to overly strong trade winds, excessive LHF, and insufficient SWF. This suggests that the excessive tropical precipitation is an intrinsic error of the atmospheric models, and that the insufficient equatorial Pacific precipitation in the coupled runs of many models comes from ocean–atmosphere feedback. Feedback analysis demonstrates that the insufficient equatorial Pacific precipitation in different models is associated with one or more of the following three biases in ocean–atmosphere feedback over the equatorial Pacific: 1) excessive Bjerknes feedback, which is caused by excessive sensitivity of precipitation to SST and overly strong time-mean surface wind speed; 2) overly positive SST–LHF feedback, which is caused by excessive sensitivity of surface air humidity to SST; and 3) insufficient SST–SWF feedback, which is caused by insufficient sensitivity of cloud amount to precipitation. Off the equator over the eastern Pacific stratus region, most of the models produce insufficient stratus–SST feedback associated with insufficient sensitivity of stratus cloud amount to SST, which may contribute to the insufficient latitudinal asymmetry of SST in their coupled runs. These results suggest that the double-ITCZ problem in CGCMs may be alleviated by reducing the excessive tropical precipitation and the above feedback-relevant errors in the atmospheric models.

Corresponding author address: Dr. Jia-Lin Lin, NOAA/ESRL/CIRES Climate Diagnostics Center, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. Email: jialin.lin@noaa.gov

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63 , 33833403.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110 , 102117.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113 , 21082121.

  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric humidity and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2003: Formation of the cold tongue and ENSO in the equatorial Pacific basin. J. Climate, 16 , 144155.

  • Chao, W. C., 2000: Multiple equilibria of the ITCZ and the origin of monsoon onset. J. Atmos. Sci., 57 , 641652.

  • Chao, W. C., and B. Chen, 2001: Multiple equilibria of the ITCZ and the origin of monsoon onset. Part II: Rotational ITCZ attractors. J. Atmos. Sci., 58 , 28202831.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an Aqua-Planet model with constant SST and solar angle. Climate Dyn., 22 , 447459.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Tropical cyclogenesis and the formation of the intertropical convergence zone. Mathematical Problems of Geophysical Fluid Dynamics, W. H. Reid, Ed., American Mathematics Society, 355–368.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and R. Seager, 1999: Climate and the tropical oceans. J. Climate, 12 , 33843401.

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Clement, A. C., R. Seager, and R. Murtugudde, 2005: Why are there tropical warm pools? J. Climate, 18 , 52945311.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Delecluse, P., M. Davey, Y. Kitamura, S. Philander, M. Suarez, and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103 , 1435714373.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and M-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15 , 25972615.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 1993: Diagnosis of the surface momentum balance over the tropical Pacific Ocean. J. Climate, 6 , 6474.

  • de Szoeke, S. P., Y. Wang, S-P. Xie, and T. Miyama, 2006: The effect of shallow cumulus convection on the eastern Pacific climate in a coupled model. Geophys. Res. Lett., 33 .L17713, doi:10.1029/2006GL026715.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and J. D. Neelin, 1995: Ocean–atmosphere interaction and the tropical climatology. Part II: Why the Pacific cold tongue is in the east. J. Climate, 8 , 13431359.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and J. D. Neelin, 1999: Coupled process and the tropical climatology. Part III: Instabilities of the fully coupled climatology. J. Climate, 12 , 16301643.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132329.

  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79 , 939947.

    • Search Google Scholar
    • Export Citation
  • Frey, H., M. Latif, and T. Stockdale, 1997: The coupled GCM ECHO-2. Part I: The tropical Pacific. Mon. Wea. Rev., 125 , 703720.

  • Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu, 1992: Cirrus cloud thermostat for tropical sea surface temperatures tested using satellite data. Nature, 358 , 394397.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Report Series 1, 86 pp.

  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13 , 22392260.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., J. M. Wallace, and J. A. Young, 1971: On boundary layer dynamics and the ITCZ. J. Atmos. Sci., 28 , 275280.

  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105 , 15401567.

  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Jin, F-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño/Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: On the role of clouds, water vapor, circulation, and boundary layer structure on the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31 , 156179.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and X. Xie, 2002: Double intertropical convergence zones—A new look using scatterometer. Geophys. Res. Lett., 29 .2072, doi:10.1029/2002GL015431.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., A. Zheng, and J. Bishop, 1994: Evaporation and solar irradiance as regulators of the seasonal and interannual variabilities of sea surface temperature. J. Geophys. Res., 99 , 1262312637.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1997: Oceanic regulation of the atmospheric Walker circulation. Bull. Amer. Meteor. Soc., 78 , 407411.

  • Liu, Z., and B. Huang, 1997: A coupled theory of the tropical climatology: Warm pool, cold tongue, and Walker circulation. J. Climate, 10 , 16621679.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and J. L. Lin, 2005: Doppler radar observations of mesoscale wind divergence in regions of tropical convection. Mon. Wea. Rev., 133 , 18081824.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., cited. 2006: Modeling the south eastern Pacific climate: Progress and challenges. NCEP EMC seminar. [Available online at http://www.emc.ncep.noaa.gov/seminars/presentations/2006/Mechoso.NCEP.Jan.06.ppt.].

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86 , 8993.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and H. A. Dijkstra, 1995: Ocean–atmosphere interaction and the tropical climatology. Part I: The dangers of flux-correction. J. Climate, 8 , 13251342.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and Coauthors, 1992: Tropical air–sea interaction in general circulation models. Climate Dyn., 7 , 73104.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426214290.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, Reading, United Kingdom, 41 pp.

  • Pan, D-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peters, M. E., and C. S. Bretherton, 2005: A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative feedbacks. J. Climate, 18 , 42164234.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9 , 29582972.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO Tech. Doc. 737, 115 pp.

  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.–Ocean, 33 , 683730.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15 , 449469.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Sun, D-Z., and Z. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the tropics. Science, 272 , 11481150.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • van der Vaart, P. C. F., H. A. Dijkstra, and F-F. Jin, 2000: The Pacific cold tongue and the ENSO mode: A unified theory within the Zebiak–Cane model. J. Atmos. Sci., 57 , 967988.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea-surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98 , 1288112893.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and R. C. J. Somerville, 1994: The preferred latitudes of the intertropical convergence zone. J. Atmos. Sci., 51 , 16191639.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1992: Effect of deep convection on the regulation of tropical sea surface temperature. Nature, 357 , 230231.

  • Xie, S-P., 1996a: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53 , 32363250.

  • Xie, S-P., 1996b: Effects of seasonal solar forcing on latitudinal asymmetry of the ITCZ. J. Climate, 9 , 29452950.

  • Xie, S-P., 2005: The shape of continents, air-sea interaction, and the rising branch of the Hadley Circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 121–152.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A , 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and K. Saito, 2001: Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: Continental forcing and ocean–atmospheric feedback. J. Climate, 14 , 12621276.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12 , 33053318.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC-GCM. Atmos.–Ocean, 3 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33 .L06709, doi:10.1029/2005GL025229.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., V. Ramanathan, and M. J. McPhaden, 1995: Convection–evaporation feedback in the equatorial Pacific. J. Climate, 8 , 30403051.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8 , 799814.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective–scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105 , 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5314 1889 105
PDF Downloads 2232 289 20