Seasonally Stratified Analysis of Simulated ENSO Thermodynamics

Tomoki Tozuka Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan

Search for other papers by Tomoki Tozuka in
Current site
Google Scholar
PubMed
Close
,
Jing-Jia Luo Frontier Research Center for Global Change/JAMSTEC, Kanagawa, Japan

Search for other papers by Jing-Jia Luo in
Current site
Google Scholar
PubMed
Close
,
Sebastien Masson LOCEAN, Paris, France

Search for other papers by Sebastien Masson in
Current site
Google Scholar
PubMed
Close
, and
Toshio Yamagata Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, and Frontier Research Center for Global Change/JAMSTEC, Kanagawa, Japan

Search for other papers by Toshio Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using outputs from the SINTEX-F1 coupled GCM, the thermodynamics of ENSO events and its relation with the seasonal cycle are investigated. Simulated El Niño events are first classified into four groups depending on during which season the Niño-3.4 sea surface temperature anomaly (SSTA) index (5°S–5°N, 120°–170°W) reaches its peak. Although the heat content of the tropical Pacific decreases for all four types, the tropical Pacific loses about twice as much during an El Niño that peaks during winter compared with one that peaks during summer. The surface heat flux, the southward heat transport at 15°S, and the Indonesian Throughflow heat transport contribute constructively to this remarkable seasonal difference. It is shown that the Indonesian Throughflow supplies anomalous heat from the Indian Ocean, especially during the summer El Niño–like event. Changes in the basic state provided by the seasonal cycle cause differences in the atmospheric response to the SSTA, which in turn lead to the difference between the surface heat flux and the meridional heat transport anomaly.

Corresponding author address: Tomoki Tozuka, Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: tozuka@eps.s.u-tokyo.ac.jp

Abstract

Using outputs from the SINTEX-F1 coupled GCM, the thermodynamics of ENSO events and its relation with the seasonal cycle are investigated. Simulated El Niño events are first classified into four groups depending on during which season the Niño-3.4 sea surface temperature anomaly (SSTA) index (5°S–5°N, 120°–170°W) reaches its peak. Although the heat content of the tropical Pacific decreases for all four types, the tropical Pacific loses about twice as much during an El Niño that peaks during winter compared with one that peaks during summer. The surface heat flux, the southward heat transport at 15°S, and the Indonesian Throughflow heat transport contribute constructively to this remarkable seasonal difference. It is shown that the Indonesian Throughflow supplies anomalous heat from the Indian Ocean, especially during the summer El Niño–like event. Changes in the basic state provided by the seasonal cycle cause differences in the atmospheric response to the SSTA, which in turn lead to the difference between the surface heat flux and the meridional heat transport anomaly.

Corresponding author address: Tomoki Tozuka, Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: tozuka@eps.s.u-tokyo.ac.jp

Save
  • AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dyn., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. C. Pacanowski, S. George, H. Philander, and A. V. Fedorov, 2004: The thermal structure of the upper ocean. J. Phys. Oceanogr., 34 , 888902.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, C. Deser, and M. J. McFadden, 2005: Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Climate, 18 , 37393758.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian throughflow and its linkage with ENSO. J. Climate, 18 , 14351444.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Guilyardi, E., 2006: El Niño mean state seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26 , 15931596.

  • Holland, C. L., and G. T. Mitchum, 2003: Interannual volume variability in the tropical Pacific. J. Geophys. Res., 108 .3369, doi:10.1029/2003JC001835.

    • Search Google Scholar
    • Export Citation
  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31 .L06304, doi:10.1029/2003GL019239.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., and J. A. Proehl, 2004: Tropical instability wave variability in the Pacific and its relation to large-scale currents. J. Phys. Oceanogr., 34 , 21212147.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Lengaigne, M., J-P. Boulanger, C. Menkes, and H. Spencer, 2006: Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J. Climate, 19 , 18501868.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, S. Behera, S. Gualdi, A. Navarra, P. Delecluse, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30 .2250, doi:10.1029/2003GL018649.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA version 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Rep. 11, 91 pp.

  • Masumoto, Y., 2002: Effects of interannual variability in the eastern Indian Ocean on the Indonesian Throughflow. J. Oceangr., 58 , 175182.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and T. Yamagata, 1991: On the origin of a model ENSO in the western Pacific. J. Meteor. Soc. Japan, 69 , 197207.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101 , 1225512263.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Pezzulli, S., D. B. Stephenson, and A. Hannachi, 2005: The variability of seasonality. J. Climate, 18 , 7188.

  • Philander, S. G. H., and R. C. Pacanowski, 1986: The mass and heat budget in a model of the tropical Atlantic Ocean. J. Geophys. Res., 91 , 1421214220.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17 , 36443657.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1997: On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr., 39 , 263352.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present day climate. Max-Plank-Institut für Meteorologie Rep. 218, 90 pp.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Sato, O. T., and P. S. Polito, 2005: Comparison of the global meridional Ekman heat flux estimated from four wind sources. J. Phys. Oceanogr., 35 , 94108.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108 .3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., and T. Yamagata, 2003: Annual ENSO. J. Phys. Oceanogr., 33 , 15641578.

  • Tozuka, T., J-J. Luo, S. Masson, S. K. Behera, and T. Yamagata, 2005: Simulated annual ENSO in a coupled ocean-atmosphere model. Dyn. Atmos. Oceans, 39 , 4160.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J-J. Luo, S. Masson, and T. Yamagata, 2007: Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Climate, 20 , 28812894.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54 , 6171.

  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACS Tech. Rep. TR/CMGC/00-10, 85 pp.

  • Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 572584.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90 , 71297132.

  • Xu, J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14 , 418433.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., Y. Shibao, and S. Umatani, 1985: Interannual variability of the Kuroshio Extension and its relation to the Southern Oscillation. J. Oceanogr. Soc. Japan, 41 , 274281.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 959 765 42
PDF Downloads 108 33 1