Roles of the Indian Ocean in the Australian Summer Monsoon–ENSO Relationship

Renguang Wu Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
and
Ben P. Kirtman School of Computational Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A negative correlation is observed between interannual variations of the Australian summer monsoon (ASM) and El Niño–Southern Oscillation (ENSO). This negative relationship is well simulated in the Center for Ocean–Land–Atmosphere (COLA) interactive ensemble coupled general circulation model (CGCM). The present study investigates roles of the Indian Ocean in the ASM–ENSO relationship through controlled numerical experiments with the COLA CGCM. It is found that air–sea coupling in the Indian Ocean plays an important role in maintaining the negative ASM–ENSO relationship. When the Indian Ocean is decoupled from the atmosphere, the ASM–ENSO relationship is significantly weakened or even masked by the internal atmospheric variability. This change in the ASM–ENSO relationship is related to complementary roles of Indian Ocean sea surface temperature (SST) anomalies in the ASM variability and feedbacks from the Indian Ocean on ENSO. Without a coupled Indian Ocean, the ENSO amplitude is reduced, leading to a decrease in the ENSO-induced ASM variability, and the constructive impacts of the Indian Ocean SST anomalies on the ASM variability are substantially reduced. This reduces the ASM variability related to ENSO. Consistent with the change in the ASM–ENSO relationship, the local air–sea relationship in the ASM region displays important differences with and without a coupled Indian Ocean.

The long-term change in the ASM–ENSO relationship is related to that in ENSO amplitude in the interactive ensemble coupled model. A relatively higher (lower) negative correlation occurs in periods of larger (smaller) ENSO amplitude. This relationship, however, is not clear in the anomaly coupled model with only one atmospheric realization. This difference is attributed to changes in the signal-to-noise ratio in the ASM variability. A comparison is made with observations and the long-term change in the Indian summer monsoon (ISM)–ENSO relationship in the model.

Corresponding author address: Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Abstract

A negative correlation is observed between interannual variations of the Australian summer monsoon (ASM) and El Niño–Southern Oscillation (ENSO). This negative relationship is well simulated in the Center for Ocean–Land–Atmosphere (COLA) interactive ensemble coupled general circulation model (CGCM). The present study investigates roles of the Indian Ocean in the ASM–ENSO relationship through controlled numerical experiments with the COLA CGCM. It is found that air–sea coupling in the Indian Ocean plays an important role in maintaining the negative ASM–ENSO relationship. When the Indian Ocean is decoupled from the atmosphere, the ASM–ENSO relationship is significantly weakened or even masked by the internal atmospheric variability. This change in the ASM–ENSO relationship is related to complementary roles of Indian Ocean sea surface temperature (SST) anomalies in the ASM variability and feedbacks from the Indian Ocean on ENSO. Without a coupled Indian Ocean, the ENSO amplitude is reduced, leading to a decrease in the ENSO-induced ASM variability, and the constructive impacts of the Indian Ocean SST anomalies on the ASM variability are substantially reduced. This reduces the ASM variability related to ENSO. Consistent with the change in the ASM–ENSO relationship, the local air–sea relationship in the ASM region displays important differences with and without a coupled Indian Ocean.

The long-term change in the ASM–ENSO relationship is related to that in ENSO amplitude in the interactive ensemble coupled model. A relatively higher (lower) negative correlation occurs in periods of larger (smaller) ENSO amplitude. This relationship, however, is not clear in the anomaly coupled model with only one atmospheric realization. This difference is attributed to changes in the signal-to-noise ratio in the ASM variability. A comparison is made with observations and the long-term change in the Indian summer monsoon (ISM)–ENSO relationship in the model.

Corresponding author address: Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., 1991: Australasia. Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impacts, M. Glantz et al., Eds., Cambridge University Press, 73–120.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and A. M. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531.

  • Cai, W., P. H. Whetton, and A. B. Pittock, 2001: Fluctuations of the relationship between ENSO and northeast Australian rainfall. Climate Dyn., 17 , 421432.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17 , 665672.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., Z. Wang, J. McBride, and C. H. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18 , 287301.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9 , 8596.

  • Drosdowsky, W., and L. E. Chambers, 2001: Near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J. Climate, 14 , 16771687.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., and R. C. Balgovind, 1994: The influence of the Indian Ocean/Indonesian SST gradient on the Australian winter rainfall and circulation in an atmospheric GCM. Quart. J. Roy. Meteor. Soc., 120 , 923952.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., D. P. Rowell, R. C. Balgovind, and C. K. Folland, 1999: Multidecadal simulations of Australian rainfall variability: The role of SSTs. J. Climate, 12 , 357379.

    • Search Google Scholar
    • Export Citation
  • Hackert, E. C., and S. Hastenrath, 1986: Mechanisms of Java rainfall anomalies. Mon. Wea. Rev., 114 , 745757.

  • Hamada, J-I., M. D. Yamanaka, J. Matsumoto, S. Fukao, P. A. Winarso, and T. Sribimawati, 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80 , 285310.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1987: Predictability of Java monsoon rainfall anomalies: A case study. J. Climate Appl. Meteor., 26 , 133141.

  • Haylock, M., and J. L. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14 , 38823887.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesia rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Holland, G. J., 1986: Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon. Wea. Rev., 114 , 594604.

  • Hung, C-W., X. Liu, and M. Yanai, 2004: Symmetry and asymmetry of the Asian and Australian summer monsoons. J. Climate, 17 , 24132426.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., B. Liebmann, and H. H. Hendon, 1991: Interannual variability of the Australian summer monsoon onset: Possible influences of Indian summer monsoon and El Niño. J. Climate, 4 , 529538.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., and Coauthors, 1997: Formulation. Vol. 1. The COLA atmosphere–biosphere general circulation model. COLA Tech. Rep. 51, 46 pp.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 .1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal prediction with a coupled tropical ocean global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescales. J. Climate, 13 , 579595.

  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284 , 21562159.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. A. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314 , 115119.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Lavery, B., A. Kariko, and N. Nicholls, 1992: A historical rainfall data set for Australia. Aust. Meteor. Mag., 40 , 3339.

  • Lavery, B., G. Joung, and N. Nicholls, 1997: An extended high-quality historical rainfall dataset for Australia. Aust. Meteor. Mag., 46 , 2738.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111 , 19982004.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., M. Haylock, and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16 , 29052914.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002: The tropospheric biennial oscillation and Asian–Australian monsoon rainfall. J. Climate, 15 , 722744.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72 , 719745.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1989: Sea surface temperatures and Australian winter rainfall. J. Climate, 2 , 965973.

  • Nicholls, N., B. Lavery, C. Frederiksen, W. Drosdowsky, and S. Torok, 1996: Recent apparent changes in relationships between the El Niño–southern oscillation and Australian rainfall and temperature. Geophys. Res. Lett., 23 , 33573360.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/GFDL, 638 pp.

  • Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1994: All-Indian monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol., 49 , 217224.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15 , 319324.

    • Search Google Scholar
    • Export Citation
  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19 , 47554771.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. International Geophysics Series, Vol. 15, Academic Press, 296 pp.

  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7586.

  • Reynolds, R. W., and D. C. Marsico, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6 , 114119.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and A. Rocha, 1991: The association of Australian winter climate with ocean temperatures to the west. J. Climate, 4 , 11471161.

    • Search Google Scholar
    • Export Citation
  • Streten, N. A., 1981: Southern Hemisphere sea surface temperature variability and apparent associations with Australian rainfall. J. Geophys. Res., 86 , 485497.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2001: Wind-induced rainfall and surface temperature anomalies in the Australian region. J. Climate, 14 , 19011922.

  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , 1445114510.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129B , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004a: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004b: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25 , 155170.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004: The impact of interannual atmospheric variability on North Pacific decadal variability. Climate Dyn., 22 , 721732.

    • Search Google Scholar
    • Export Citation
  • Yoo, S-H., S. Yang, and C-H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian–Australian monsoon climate. J. Geophys. Res., 111 .D03108, doi:10.1029/2005JD006001.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29 .1204, doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., S-P. Weng, and J. D. Farrara, 2003: Ocean roles in the TBO transitions of the Indian–Australian monsoon system. J. Climate, 16 , 30723080.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–1998 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2048 1764 56
PDF Downloads 272 52 2