• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation projects: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., P. E. Ciesielski, R. H. Johnson, B. D. McNoldy, and B. Stevens, 2004: The low-level circulation of the North American monsoon as revealed by QuikSCAT. Geophys. Res. Lett., 31 .L10109, doi:10.1029/2004GL020009.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128 , 19932018.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2002: Interannual variability of the bimodal distribution of summertime rainfall over Central America and tropical storm activity in the far-eastern Pacific. Climate Res., 22 , 141146.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2004: Diurnal cycle of rainfall and surface winds and the mid-summer drought of Mexico/Central America. Climate Res., 27 , 18.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Higgins, R. W., J. E. Janowiak, and Y. Yao, 1996: A Gridded Hourly Precipitation Database for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12 , 653680.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamical Meteorology. 3d ed. Academic Press, 511 pp.

  • Huffman, G. J., R. F. Adler, B. Rudolph, U. Schneider, and P. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8 , 12841295.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., I. C. Handoh, and G. R. Bigg, 2002: Bimodal distribution of tropical cyclogenesis in the Caribbean: Characteristics and environmental factors. J. Climate, 15 , 28972905.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, B. D. McNoldy, P. J. Rogers, and R. K. Taft, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20 , 16281648.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 2002: Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr., 32 , 24572471.

  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Magana, V., and E. Caetano, 2005: Temporal evolution of summer convective activity over the Americas warm pools. Geophys. Res. Lett., 32 .L02803, doi:10.1029/2004GL021033.

    • Search Google Scholar
    • Export Citation
  • Magana, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12 , 15771588.

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern north Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13 , 14511460.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131 , 799812.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. Liu, and N. Buenning, 2005: Indian monsoon onset and the Americas midsummer drought: Out-of-equilibrium responses to smooth seasonal forcing. J. Climate, 18 , 11091115.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14 , 31923211.

  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126 , 33433369.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and D. K. Smith, 1999: A model function for the ocean-normalised radar cross-section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1149911514.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288 , 847850.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18 , 525.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and Coauthors, 2007: A regional ocean–atmosphere model for eastern Pacific climate: Toward reducing tropical biases. J. Climate, 20 , 15041522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 558 221 20
PDF Downloads 334 123 6

The Central American Midsummer Drought: Regional Aspects and Large-Scale Forcing

Richard Justin O. SmallInternational Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Richard Justin O. Small in
Current site
Google Scholar
PubMed
Close
,
Simon P. de SzoekeInternational Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Simon P. de Szoeke in
Current site
Google Scholar
PubMed
Close
, and
Shang-Ping XieDepartment of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The midsummer drought (MSD) is a diminution in rainfall experienced during the middle of the rainy season in southern Mexico and Central America, as well as in the adjacent Caribbean, Gulf of Mexico, and eastern Pacific seas. The aim of this paper is to describe the regional characteristics of the MSD and to propose some possible forcing mechanisms. Satellite and in situ data are used to form a composite of the evolution of a typical MSD, which highlights its coincidence with a low-level anticyclone centered over the Gulf of Mexico and associated easterly flow across Central America. The diurnal cycle of precipitation over the region is reduced in amplitude during midsummer. The MSD is also coincident with heavy precipitation over the Sierra Madre Occidental (part of the North American monsoon). Reanalysis data are used to show that the divergence of the anomalous low-level flow during the MSD is the main factor governing the variations in precipitation. A linear baroclinic model is used to show that the seasonal progression of the Pacific intertropical convergence zone (ITCZ), which moves northward following warm sea surface temperature (SST) during the early summer, and of the Atlantic subtropical high, which moves westward, are the most important remote factors that contribute toward the low-level easterly flow and divergence during the MSD. The circulation associated with the MSD precipitation deficit helps to maintain the deficit by reinforcing the low-level anticyclonic flow over the Gulf of Mexico. Surface heating over land also plays a role: a large thermal low over the northern United States in early summer is accompanied by enhanced subsidence over the North Atlantic. This thermal low is seen to decrease considerably in midsummer, allowing the high pressure anomalies in the Atlantic and Pacific Oceans to extend into the Gulf of Mexico. These anomalies are maintained until late summer, when an increase in rainfall from the surge in Atlantic tropical depressions induces anomalous surface cyclonic flow with westerlies fluxing moisture from the Pacific ITCZ toward Central America.

Corresponding author address: Richard Justin O. Small, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: small@hawaii.edu

Abstract

The midsummer drought (MSD) is a diminution in rainfall experienced during the middle of the rainy season in southern Mexico and Central America, as well as in the adjacent Caribbean, Gulf of Mexico, and eastern Pacific seas. The aim of this paper is to describe the regional characteristics of the MSD and to propose some possible forcing mechanisms. Satellite and in situ data are used to form a composite of the evolution of a typical MSD, which highlights its coincidence with a low-level anticyclone centered over the Gulf of Mexico and associated easterly flow across Central America. The diurnal cycle of precipitation over the region is reduced in amplitude during midsummer. The MSD is also coincident with heavy precipitation over the Sierra Madre Occidental (part of the North American monsoon). Reanalysis data are used to show that the divergence of the anomalous low-level flow during the MSD is the main factor governing the variations in precipitation. A linear baroclinic model is used to show that the seasonal progression of the Pacific intertropical convergence zone (ITCZ), which moves northward following warm sea surface temperature (SST) during the early summer, and of the Atlantic subtropical high, which moves westward, are the most important remote factors that contribute toward the low-level easterly flow and divergence during the MSD. The circulation associated with the MSD precipitation deficit helps to maintain the deficit by reinforcing the low-level anticyclonic flow over the Gulf of Mexico. Surface heating over land also plays a role: a large thermal low over the northern United States in early summer is accompanied by enhanced subsidence over the North Atlantic. This thermal low is seen to decrease considerably in midsummer, allowing the high pressure anomalies in the Atlantic and Pacific Oceans to extend into the Gulf of Mexico. These anomalies are maintained until late summer, when an increase in rainfall from the surge in Atlantic tropical depressions induces anomalous surface cyclonic flow with westerlies fluxing moisture from the Pacific ITCZ toward Central America.

Corresponding author address: Richard Justin O. Small, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: small@hawaii.edu

Save