• Allen, M. R., and W. J. Ingram, 2002: Constraints on the future changes in climate and the hydrological cycle. Nature, 419 , 224232.

  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8 , 225239.

  • Bony, S., J. P. Duvel, and H. L. Treut, 1995: Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature: Comparison with climate warming experiments. Climate Dyn., 11 , 307320.

    • Search Google Scholar
    • Export Citation
  • Chen, M., R. E. Dickinson, X. Zeng, and A. N. Hahmann, 1996: Comparison of precipitation observed over the continental United States to that simulated by a climate model. J. Climate, 9 , 22232249.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge Unversity Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14 , 10921111.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006a: Recent climatology, variability and trends in global surface humidity. J. Climate, 19 , 35893606.

  • Dai, A., 2006b: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model simulated precipitation diurnal cycles over the contiguous United States. J. Geophys. Res., 104 , 63776402.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001a: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster, 2001b: Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization. Bull. Amer. Meteor. Soc., 82 , 23772388.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 .L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Emori, S., A. Hasegawa, T. Suzuki, and K. Dairaku, 2005: Validation, parameterization dependence, and future projection of daily precipitation simulated with a high-resolution atmospheric GCM. Geophys. Res. Lett., 32 .L06708, doi:10.1029/2004GL022306.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., P. H. Whetton, A. B. Pittock, A. M. Fowler, and M. R. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: Implications for extreme rainfall events. Climate Dyn., 8 , 83102.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. M. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5 , 6485.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. A. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18 , 13261350.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., and N. Nicholls, 2000: Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int. J. Climatol., 20 , 15331541.

    • Search Google Scholar
    • Export Citation
  • Hennessy, K. J., J. M. Gregory, and J. F. B. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 12 , 667680.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79 , 231241.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16 , 36653680.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30 .1900, doi:10.1029/2003GL018052.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. Int. J. Climatol., 21 , 269284.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of precipitation extremes in climate model simulations. Geophys. Res. Lett., 32 .L18179, doi:10.1029/2005GL023680.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Climate Dyn., 17 , 123140.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for regularly spaced data. Proc. 23d National Conf. of American Computing Machinery, Princeton, NJ, Association for Computing Machinery, 517–524.

  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296 , 727730.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19 , 916934.

  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79 , 185211.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change, 39 , 667694.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., and M. R. Dix, 2003: Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J. Geophys. Res., 108 .4379, doi:10.1029/2002JD002928.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and T. M. L. Wigley, 2002: Future changes in the distribution of daily precipitation totals across North America. Geophys. Res. Lett., 29 .1135, doi:10.1029/2001GL013048.

    • Search Google Scholar
    • Export Citation
  • Xie, P., B. Rudolf, U. Schneider, and P. A. Arkin, 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Geophys. Res., 101 , 1902319034.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19 , 17301747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 961 411 58
PDF Downloads 622 239 27

How Often Will It Rain?

Ying SunNational Climate Center, China Meteorological Administration, Beijing, China, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ying Sun in
Current site
Google Scholar
PubMed
Close
,
Susan SolomonNOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
,
Aiguo DaiNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
, and
Robert W. PortmannNOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Robert W. Portmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Daily precipitation data from climate change simulations using the latest generation of coupled climate system models are analyzed for potential future changes in precipitation characteristics. For the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 (a low projection), A1B (a medium projection), and A2 (a high projection) during the twenty-first century, all the models consistently show a shift toward more intense and extreme precipitation for the globe as a whole and over various regions. For both SRES B1 and A2, most models show decreased daily precipitation frequency and all the models show increased daily precipitation intensity. The multimodel averaged percentage increase in the precipitation intensity (2.0% K−1) is larger than the magnitude of the precipitation frequency decrease (−0.7% K−1). However, the shift in precipitation frequency distribution toward extremes results in large increases in very heavy precipitation events (>50 mm day−1), so that for very heavy precipitation, the percentage increase in frequency is much larger than the increase in intensity (31.2% versus 2.4%). The climate model projected increases in daily precipitation intensity are, however, smaller than that based on simple thermodynamics (∼7% K−1). Multimodel ensemble means show that precipitation amount increases during the twenty-first century over high latitudes, as well as over currently wet regions in low- and midlatitudes more than other regions. This increase mostly results from a combination of increased frequency and intensity. Over the dry regions in the subtropics, the precipitation amount generally declines because of decreases in both frequency and intensity. This indicates that wet regions may get wetter and dry regions may become drier mostly because of a simultaneous increase (decrease) of precipitation frequency and intensity.

Corresponding author address: Ying Sun, National Climate Center, China Meteorological Administration, 46 Zhongguancun Nandajie, Beijing 100081, China. Email: yingsun75@yahoo.com

Abstract

Daily precipitation data from climate change simulations using the latest generation of coupled climate system models are analyzed for potential future changes in precipitation characteristics. For the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 (a low projection), A1B (a medium projection), and A2 (a high projection) during the twenty-first century, all the models consistently show a shift toward more intense and extreme precipitation for the globe as a whole and over various regions. For both SRES B1 and A2, most models show decreased daily precipitation frequency and all the models show increased daily precipitation intensity. The multimodel averaged percentage increase in the precipitation intensity (2.0% K−1) is larger than the magnitude of the precipitation frequency decrease (−0.7% K−1). However, the shift in precipitation frequency distribution toward extremes results in large increases in very heavy precipitation events (>50 mm day−1), so that for very heavy precipitation, the percentage increase in frequency is much larger than the increase in intensity (31.2% versus 2.4%). The climate model projected increases in daily precipitation intensity are, however, smaller than that based on simple thermodynamics (∼7% K−1). Multimodel ensemble means show that precipitation amount increases during the twenty-first century over high latitudes, as well as over currently wet regions in low- and midlatitudes more than other regions. This increase mostly results from a combination of increased frequency and intensity. Over the dry regions in the subtropics, the precipitation amount generally declines because of decreases in both frequency and intensity. This indicates that wet regions may get wetter and dry regions may become drier mostly because of a simultaneous increase (decrease) of precipitation frequency and intensity.

Corresponding author address: Ying Sun, National Climate Center, China Meteorological Administration, 46 Zhongguancun Nandajie, Beijing 100081, China. Email: yingsun75@yahoo.com

Save