• An, S-I., and F-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27 , 25732576.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and F-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17 , 23992412.

  • An, S-I., A. Timmermann, L. Bejarano, F-F. Jin, F. Justino, Z. Liu, and S. Tudhope, 2004: Modeling evidence for enhanced El Niño–Southern Oscillation amplitude during the Last Glacial Maximum. Paleocanography, 19 .PA4009, doi:10.1029/2004PA001020.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean, with application to upwelling. Deep-Sea Res., 22 , 583596.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Codron, F., A. Vintzileos, and R. Sadourny, 2001: Influence of mean state changes on the structure of ENSO in a tropical coupled GCM. J. Climate, 14 , 730742.

    • Search Google Scholar
    • Export Citation
  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17 , 6181.

    • Search Google Scholar
    • Export Citation
  • Dahl, K. A., A. J. Broccoli, and R. J. Stouffer, 2005: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dyn., 24 , 325346.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and T. R. Knutson, 2000: Simulation of early 20th Century global warming. Science, 287 , 22462250.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., 2005: Asymmetry between El Niño and La Niña in a global coupled GCM with an eddy-permitting ocean resolution. J. Climate, 18 , 30843098.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., and R. T. Sutton, 2002: Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett., 29 .1728, doi:10.1029/2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33 .L08705, doi:10.1029/2006GL025766.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmospheric interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863110.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Goodman, P. J., 2001: Thermohaline adjustment and advection in an OGCM. J. Phys. Oceanogr., 31 , 14771497.

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the Tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 29 , 329348.

  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., S-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30 .1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34 , 17021722.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., and J-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107 .4372, doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., K. Pegion, and S. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62 , 22202233.

    • Search Google Scholar
    • Export Citation
  • Knight, J., R. Allan, C. Folland, M. Vellinga, and M. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32 .L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Lu, R-Y., and B-W. Dong, 2005: Impact of Atlantic SST anomalies on the summer climate in the western North Pacific during 1997–1998. J. Geophys. Res., 110 .D16102, doi:10.1029/2004JD005676.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1999: The role of thermohaline circulation in climate. Tellus, 51 , 91109.

  • Moon, B-K., S-W. Yeh, B. Dewitte, J-G. Jhun, I-S. Kang, and B. P. Kirtman, 2004: Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys. Res. Lett., 31 .L03203, doi:10.1029/2003GL018829.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in Northeast Brazil: Observations, theory, and numerical experiments with a general circulation model. J. Atmos. Sci., 38 , 26532675.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and L. P. Solheim, 2004: The climate of the Earth at Last Glacial Maximum: statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23 , 335357.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17 , 37613774.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32 .L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Smethie Jr., W. J., and R. A. Fine, 2001: Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I, 48 , 189215.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. T. Sutton, and J. M. Slingo, 2007: El Niño in a coupled climate model: Sensitivity to changes in mean state induced by heat flux and wind stress corrections. J. Climate, 20 , 22732298.

    • Search Google Scholar
    • Export Citation
  • Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297 , 222226.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20 , 891907.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., 2003: Decadal ENSO amplitude modulations: A nonlinear paradigm. Global Planet. Change, 37 , 135156.

  • Timmermann, A., M. Latif, R. Voss, and A. Groetzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S-I. An, U. Krebs, and H. Goosse, 2005: ENSO Suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18 , 31223139.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20 , 48994919.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28 , 37093712.

  • Wang, B., and S-I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18 , 475486.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., C. M. Bitz, A. F. Fanning, and M. M. Holland, 1999: Thermohaline circulation: High latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci., 27 , 231285.

    • Search Google Scholar
    • Export Citation
  • Wu, A., and W. W. Hsieh, 2003: Nonlinear interdecadal changes of the El Niño-Southern Oscillation. Climate Dyn., 21 , 719730.

  • Wu, L., F. He, and Z. Liu, 2005: Coupled ocean-atmosphere response to north tropical Atlantic SST: Tropical Atlantic dipole and ENSO. Geophys. Res. Lett., 32 .L21712, doi:10.1029/2005GL024222.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and Coauthors, 2007: A regional ocean–atmosphere model for eastern Pacific climate: Toward reducing tropical biases. J. Climate, 20 , 15041522.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109 .C11009, doi:10.1029/2004JC002442.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., and A. J. Busalacchi, 2005: Interdecadal change in properties of El Niño–Southern Oscillation in an intermediate coupled model. J. Climate, 18 , 13691380.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 183 19
PDF Downloads 245 88 8

Enhancement of ENSO Variability by a Weakened Atlantic Thermohaline Circulation in a Coupled GCM

Buwen DongWalker Institute for Climate System Research, University of Reading, and National Centre for Atmospheric Science—Climate, Reading, United Kingdom

Search for other papers by Buwen Dong in
Current site
Google Scholar
PubMed
Close
and
Rowan T. SuttonWalker Institute for Climate System Research, University of Reading, and National Centre for Atmospheric Science—Climate, Reading, United Kingdom

Search for other papers by Rowan T. Sutton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability.

In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Corresponding author address: Buwen Dong, Walker Institute for Climate System Research, University of Reading, and National Centre for Atmospheric Science—Climate, Reading, RG6 6BB, United Kingdom. Email: b.dong@reading.ac.uk

Abstract

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability.

In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Corresponding author address: Buwen Dong, Walker Institute for Climate System Research, University of Reading, and National Centre for Atmospheric Science—Climate, Reading, RG6 6BB, United Kingdom. Email: b.dong@reading.ac.uk

Save