• Bartov, Y., S. Goldstein, M. Stein, and Y. Enzel, 2003: Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology, 31 , 439442.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291 , 109112.

    • Search Google Scholar
    • Export Citation
  • Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani, 1993: Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 19 , 143147.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 .L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1994: Massive iceberg discharges as triggers for global climate change. Nature, 372 , 421424.

  • Bryden, H., H. Longworth, and S. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25° N. Nature, 438 , 655657.

    • Search Google Scholar
    • Export Citation
  • Campin, J., and H. Goosse, 1999: A parameterization of dense overflow in large-scale ocean models in z-coordinate. Tellus, 51A , 412430.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean basins. Geophys. Res. Lett., 31 .L04302, doi:10.1029/2003GL019091.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., and S. K. Baum, 1997: Effect of vegetation on an ice-age climate model simulation. J. Geophys. Res., 102 , 1646316480.

    • Search Google Scholar
    • Export Citation
  • Dahl, K. A., A. J. Broccoli, and R. J. Stouffer, 2005: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dyn., 24 , 325346.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., and R. T. Sutton, 2002: Adjustment of the coupled ocean–atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett., 29 .1728, doi:10.1029/2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Elliot, M., L. Labeyrie, and J. Duplessy, 2002: Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev., 21 , 11531165.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Geraga, M., S. Tsaila-Monopolis, C. Ioakim, G. Papatheodorou, and G. Ferentinos, 2005: Short-term climate changes in the southern Aegean Sea over the last 48,000 years. Paleogeogr. Paleoclimatol. Paleoecol., 220 , 311332.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45 , 89112.

    • Search Google Scholar
    • Export Citation
  • Goodman, P., 2001: Thermohaline adjustment and advection in an OGCM. J. Phys. Oceanogr., 31 , 14771497.

  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Deleersnijder, T. Fichefet, and M. England, 1999: Sensitivity of a global coupled ocean–sea ice model to the parameterization of vertical mixing. J. Geophys. Res., 104 , 1368113695.

    • Search Google Scholar
    • Export Citation
  • Heinrich, H., 1988: Origin and consequence of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29 , 142152.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., 2004: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 .RG1005, doi:10.1029/2003RG000128.

    • Search Google Scholar
    • Export Citation
  • Huang, R., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Huang, R., M. Cane, N. Naik, and P. Goodman, 2000: Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett., 27 , 759762.

    • Search Google Scholar
    • Export Citation
  • Ivanochko, T., R. Ganeshram, G-J. Brummer, G. Ganssen, S. Jung, S. Moreton, and D. Kroon, 2005: Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet. Sci. Lett., 235 , 302314.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18 , 40134031.

    • Search Google Scholar
    • Export Citation
  • Justino, F., A. Timmermann, U. Merkel, and E. Sousa, 2005: Synoptic reorganizations of atmospheric flow during the Last Glacial Maximum. J. Climate, 18 , 28262846.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., U. Send, W. Zenk, A. Chave, and M. Rhein, 2006: Monitoring the integrated deep meridional flow in the tropical North Atlantic: Long-term performance of a geostrophic array. Deep-Sea Res., 53 , 528546.

    • Search Google Scholar
    • Export Citation
  • Kienast, M., S. Kienast, S. Calvert, T. Eglington, G. Mollenhauer, R. Francois, and A. Mix, 2006: Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature, 443 , 846849.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Fluckiger, T. Stocker, and A. Timmermann, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430 , 851856.

    • Search Google Scholar
    • Export Citation
  • Krebs, U., and A. Timmermann, 2007: Fast advective recovery of the meridional overturning circulation after a Heinrich event. Paleoceanography, 22 .PA1220, doi:10.1029/2005PA001259.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Stouffer, 1999: Are two modes of thermohaline circulation stable? Tellus, 51A , 400411.

  • McManus, J., R. Francois, J. Gherardi, L. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 , 834837.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., P. Stone, and J. Marotzke, 1994: Destabilization of the thermohaline circulation by atmospheric eddy transports. J. Climate, 7 , 18701882.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., G. Brostrom, and G. Walin, 2003: The thermohaline circulation and vertical mixing: Does weak density stratification give stronger overturning? J. Phys. Oceanogr., 33 , 27812795.

    • Search Google Scholar
    • Export Citation
  • Oppo, D. W., and S. Lehmann, 1995: Suborbita timescale variability of North-Atlantic deep-water during the past 200,000 years. Paleoceanography, 10 , 901910.

    • Search Google Scholar
    • Export Citation
  • Opseegh, J., R. Haarsma, F. Selten, and A. Kattenberg, 1998: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus, 50A , 348367.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1994: Ice age paleotopography. Science, 265 , 195201.

  • Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Röhl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290 , 19471951.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and J. Willebrand, 1995: The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr., 25 , 787805.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32 .L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., H. Goosse, and T. Fichefet, 2002: Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability. Paleoceanography, 17 .1020, doi:10.1029/2001PA000649.

    • Search Google Scholar
    • Export Citation
  • Saenko, V., A. Schmittner, and A. Weaver, 2004: The Atlantic–Pacific see-saw. J. Climate, 17 , 20332038.

  • Seidov, D., and M. Maslin, 2001: Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard–Oeschger events. J. Quat. Sci., 16 , 321328.

    • Search Google Scholar
    • Export Citation
  • Stocker, T., and D. Wright, 1991: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351 , 729732.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224230.

  • Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2003: Super ENSO and global climate oscillations at millennial time scales. Science, 297 , 222226.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and H. Goosse, 2004: Is the wind stress forcing essential for the meridional overturning circulation? Geophys. Res. Lett., 31 .L04303, doi:10.1029/2003GL018777.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F. Justino, F. Jin, H. Goosse, and U. Krebs, 2004: Surface temperature control in the North and tropical Pacific during the Last Glacial Maximum. Climate Dyn., 23 , 353370.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. An, U. Krebs, and H. Goosse, 2005a: ENSO suppression due to a weakening of the North Atlantic thermohaline circulation. J. Climate, 18 , 31223139.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., U. Krebs, F. Justino, H. Goosse, and T. Ivanochko, 2005b: Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography, 20 .PA4008, doi:10.1029/2004PA001090.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20 , 48994919.

    • Search Google Scholar
    • Export Citation
  • Turney, C., A. Kershaw, S. Clemens, N. Branch, P. Moss, and K. Fifield, 2004: Millennial and orbital variations in El Niño/Southern Oscillation and high latitude climate in the last glacial period. Nature, 428 , 306.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. Wu, 2004: Low-latitude freshwater influences on centennial variability of the Atlantic thermohaline circulation. J. Climate, 17 , 44984511.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., R. Wood, and J. M. Gregory, 2002: Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Climate, 15 , 764779.

    • Search Google Scholar
    • Export Citation
  • Vidal, L., L. Labeyrie, E. Cortijo, M. Arnold, J. Duplessy, E. Michel, S. Becque, and T. vanWeering, 1997: Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett., 146 , 1327.

    • Search Google Scholar
    • Export Citation
  • Wang, X., A. Auler, R. Edwards, H. Cheng, P. Cristalli, P. Smart, D. Richards, and C. Shen, 2004: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432 , 740743.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Cheng, R. Edwards, Z. An, J. Wu, C. Shen, and J. Dorale, 2001: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294 , 23452348.

    • Search Google Scholar
    • Export Citation
  • Winton, M., and E. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23 , 13891410.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and Z. Liu, 2005: Tropical–extratropical climate interaction as revealed in idealized coupled climate model experiments. Climate Dyn., 24 , 863879.

    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, N. G. Andronova, S. Malyshev, and B. Li, 2006: Is a shutdown of the thermohaline circulation irreversible? J. Geophys. Res., 111 .D12104, doi:10.1029/2005JD006562.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 453 181 11
PDF Downloads 273 106 9

Tropical Air–Sea Interactions Accelerate the Recovery of the Atlantic Meridional Overturning Circulation after a Major Shutdown

Uta KrebsNational Oceanography Centre, Southampton, United Kingdom

Search for other papers by Uta Krebs in
Current site
Google Scholar
PubMed
Close
and
A. TimmermannIPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by A. Timmermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case.

The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.

Corresponding author address: A. Timmermann, IPRC, SOEST, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: axel@hawaii.edu

Abstract

Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case.

The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.

Corresponding author address: A. Timmermann, IPRC, SOEST, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: axel@hawaii.edu

Save