• Barber, R. T., and F. P. Chavez, 1983: Biological consequences of El Niño. Science, 222 , 12031210.

  • Barber, R. T., and F. P. Chavez, 1991: Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr., 36 , 18031815.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., M. Latif, N. Graham, M. Flugel, S. Pazan, and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14 , 361390.

  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24 , 21562179.

    • Search Google Scholar
    • Export Citation
  • Christian, J. R., and R. Murtugudde, 2003: Tropical Atlantic variability in a coupled physical-biogeochemical ocean model. Deep-Sea Res. II, 50 , 29472969.

    • Search Google Scholar
    • Export Citation
  • Christian, J. R., M. A. Verschell, R. Murtugudde, A. J. Busalacchi, and C. R. McClain, 2002: Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability. Deep-Sea Res. II, 49 , 509543.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., 1973: A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3 , 173184.

  • Dickey, T. D., and J. J. Simpson, 1983: The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35B , 142154.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 1994: Description of the ECMWF/WCRP Level-III. A global atmospheric data archive, 72 pp.

  • Edwards, A. M., T. Platt, and D. G. Wright, 2001: Biologically induced circulation at fronts. J. Geophys. Res., 106 , 70817095.

  • Gildor, H., and N. H. Naik, 2005: Evaluating the effect of interannual variations of surface chlorophyll on upper ocean temperature. J. Geophys. Res., 110 .C07012, doi:10.1029/2004JC002779.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., A. H. Sobel, M. A. Cane, and R. N. Sambrotto, 2003: A role for ocean biota in tropical intraseasonal atmospheric variability. Geophys. Res. Lett., 30 .1460, doi:10.1029/2002GL016759.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the Tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier Oceanography Series, Vol. 5, Elsevier, 154 pp.

  • Jin, F. F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase—Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed-layer model for geophysical applications. J. Geophys. Res., 99 , 2523525266.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, P. A. Rochford, and J. J. O’Brien, 2004: The impact of water turbidity on interannual sea surface temperature simulations in a layered global ocean model. J. Phys. Oceanogr., 34 , 345359.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., M. E. Carr, G. C. Feldman, W. Esaias, and C. McClain, 1990: Influence of penetrating solar-radiation on the heat-budget of the equatorial Pacific Ocean. Nature, 347 , 543545.

    • Search Google Scholar
    • Export Citation
  • Liu, Z. G., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15 , 10881098.

  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96 , 33433357.

  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32 .L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., A. Timmermann, R. Murtugudde, and F-F. Jin, 2005: Biophysical feedbacks in the tropical Pacific. J. Climate, 18 , 5870.

  • McClain, C. R., M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, 1998: Science quality SeaWiFS data for global biosphere research. Sea Technol., 39 , 1016.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, J. M. Arblaster, and A. X. Hu, 2004: Factors affecting climate sensitivity in global coupled models. J. Climate, 17 , 15841596.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., and Coauthors, 2003: Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bull. Amer. Meteor. Soc., 84 , 617633.

    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 1989: A numerical-model for the computation of radiance distributions in natural-waters with wind-roughened surfaces. Limnol. Oceanogr., 34 , 14731483.

    • Search Google Scholar
    • Export Citation
  • Monterey, G. I., and S. Levitus, 1997: Climatological cycle of mixed layer depth in the World Ocean. NOAA/NESDIS, 5 pp.

  • Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res., 93 , 1074910768.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R. G., S. R. Signorini, J. R. Christian, A. J. Busalacchi, C. R. McClain, and J. Picaut, 1999: Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–1998. J. Geophys. Res., 104 , 1835118366.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and A. J. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15 , 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, K. Muneyama, and R. Frouin, 2000: Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys. Res. Lett., 27 , 747750.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28 , 20212024.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. Oberhuber, H. Saito, K. Muneyama, and R. Frouin, 2002: Chlorophyll modulation of mixed layer thermodynamics in a mixed-layer isopycnal General Circulation Model—An example from Arabian Sea and equatorial Pacific. Proc. Ind. Acad. Sci.-Earth Planet. Sci., 111 , 339349.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Ohlmann, J. C., D. A. Siegel, and C. Gautier, 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 22652280.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and L. Washburn, 1998: Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103 , 53795395.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. D. Mobley, 2000: Ocean radiant heating. Part I: Optical influences. J. Phys. Oceanogr., 30 , 18331848.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., 2004: Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J. Geophys. Res., 109 .C12031, doi:10.1029/2004JC002430.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rochford, P. A., A. B. Kara, A. J. Wallcraft, and R. A. Arnone, 2001: Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106 , 3092330938.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max Planck Institute for Meteorology, Hamburg, Germany, 90 pp.

  • Sathyendranath, S., A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, 1991: Biological-control of surface-temperature in the Arabian Sea. Nature, 349 , 5456.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and Z. X. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11 , 19321950.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., T. Barnett, M. Latif, and T. Stockdale, 1996: Warm pool physics in a coupled GCM. J. Climate, 9 , 219239.

  • Shell, K. M., R. Frouin, S. Nakamoto, and R. C. J. Somerville, 2003: Atmospheric response to solar radiation absorbed by phytoplankton. J. Geophys. Res., 108 .4445, doi:10.1029/2003JD003440.

    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. M. Zhou, 1995: Solar-radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. J. Geophys. Res., 100 , 48854891.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and T. D. Dickey, 1981a: The relationship between downward irradiance and upper ocean structure. J. Phys. Oceanogr., 11 , 309323.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and T. D. Dickey, 1981b: Alternative parameterizations of downward irradiance and their dynamical significance. J. Phys. Oceanogr., 11 , 876882.

    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., and F. P. Chavez, 2004: Biological heating in the equatorial Pacific: Observed variability and potential for real-time calculation. J. Climate, 17 , 10971109.

    • Search Google Scholar
    • Export Citation
  • Syu, H. H., J. D. Neelin, and D. Gutzler, 1995: Seasonal and interannual variability in a hybrid coupled GCM. J. Climate, 8 , 21212143.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F. F. Jin, 2002: Phytoplankton influences on tropical climate. Geophys. Res. Lett., 29 .2104, doi:10.1029/2002GL015434.

    • Search Google Scholar
    • Export Citation
  • Turk, D., M. R. Lewis, G. W. Harrison, T. Kawano, and I. Asanuma, 2001: Geographical distribution of new production in the western/central equatorial Pacific during El Niño and non-El Niño conditions. J. Geophys. Res., 106 , 45014515.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El-Niño chaos—Overlapping of resonances between the seasonal cycle and the Pacific Ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11 , 21912199.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7 , 20082013.

  • Zhang, R-H., and A. J. Busalacchi, 2005: Interdecadal changes in properties of El Niño in an intermediate coupled model. J. Climate, 18 , 13691380.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30 .2012, doi:10.1029/2003GL018010.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133 , 27772802.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 95 6
PDF Downloads 84 49 4

Coupled Ocean–Atmosphere Response to Seasonal Modulation of Ocean Color: Impact on Interannual Climate Simulations in the Tropical Pacific

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.

Corresponding author address: Dr. J. Ballabrera-Poy, CMIMA/CSIC, Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain. Email: joaquim@cmima.csic.es

Abstract

The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.

Corresponding author address: Dr. J. Ballabrera-Poy, CMIMA/CSIC, Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain. Email: joaquim@cmima.csic.es

Save