• Barros, A. P., and W. Hwu, 2002: A study of land-atmosphere interactions during summertime rainfall using a mesoscale model. J. Geophys. Res., 107 .4227, doi:10.1029/2000JD000254.

    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2002: Ecological Climatology. Cambridge University Press, 678 pp.

  • Chalita, S., and H. LeTreut, 1994: The albedo of temperate and boreal forest and the Northern Hemisphere climate: A sensitivity experiment using the LMD GCM. Climate Dyn., 10 , 231240.

    • Search Google Scholar
    • Export Citation
  • Charney, J., W. J. Quirk, S-H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and A. Navarra, 2006: Sensitivity of the Asian summer monsoon to the horizontal resolution: Differences between AMIP-type and coupled model experiments. Climate Dyn., doi:10.1007/s00382-006-0183-z.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and J. Polcher, 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2 , 239255.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99 , 863877.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., K. Laval, and J. Polcher, 1998: Sensitivity of the hydrological cycle to the parameterization of soil hydrology in a GCM. Climate Dyn., 14 , 307327.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N. I., K. Laval, and A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges of the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6 , 248273.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and L. Dümenil, 1998: A parameterization of the lateral waterflow for the global scale. Climate Dyn., 14 , 1731.

  • Hall, F., G. Collatz, S. Los, E. Brown de Colstoun, and D. Landis, Eds. 2005: ISLSCP Initiative II. NASA, DVD/CD-ROM. [Available online at http://islscp2.sesda.com.].

  • Henderson-Sellers, A., R. E. Dickinson, T. B. Durbidge, P. J. Kennedy, K. McGuffie, and A. J. Pitman, 1993: Tropical deforestation: Modeling local- to regional-scale climate change. J. Geophys. Res., 98 , D4. 72897315.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., L. Zhou, R. B. Myneni, C. J. Tucker, D. Slayback, N. V. Shabanov, and J. Pinzon, 2003: The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., 30 .2147, doi:10.1029/2003GL018251.

    • Search Google Scholar
    • Export Citation
  • Kittredge, J., 1948: Forest Influences: The Effects of Woody Vegetation on Climate, Water, and Soil, with Applications to the Conservation of Water and the Control of Floods and Erosion. McGraw-Hill, 394 pp.

    • Search Google Scholar
    • Export Citation
  • Knorr, W., and K. G. Schnitzler, 2006: Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes. Climate Dyn., 26 , 5563.

    • Search Google Scholar
    • Export Citation
  • Knorr, W., K. G. Schnitzler, and Y. Govaerts, 2001: The role of bright desert regions in shaping North African climate. Geophys. Res. Lett., 28 , 34893492.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2004: Suggestion in the observational record of land–atmosphere feedback operating at seasonal time scales. J. Hydrometeor., 5 , 567572.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., P. A. Dirmeyer, A. N. Hahmann, R. Ijpelaar, L. Tyahla, P. Cox, and M. J. Suarez, 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3 , 363375.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 .1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19 .GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and W. Bua, 1998: Mechanisms of monsoon–Southern Oscillation coupling: Insights from GCM experiments. Climate Dyn., 14 , 759779.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and J. M. Slingo, 2004: An annual cycle of vegetation in a GCM. Part II: Global impacts on climate and hydrology. Climate Dyn., 22 , 107122.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Search Google Scholar
    • Export Citation
  • Lu, C-H., M. Kanamitsu, J. O. Roads, W. Ebisuzaki, K. E. Mitchell, and D. Lohmann, 2005: Evaluation of soil moisture in the NCEP–NCAR and NCEP–DOE global reanalyses. J. Hydrometeor., 6 , 391408.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97 , 739774.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., A. Henderson-Sellers, H. Zhang, T. B. Durbridge, and A. J. Pitman, 1995: Global climate sensitivity to tropical deforestation. Global Planet. Change, 10 , 97128.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1988: A comparison of soil moisture sensitivity in two global climate models. J. Atmos. Sci., 45 , 14761496.

    • Search Google Scholar
    • Export Citation
  • Moron, V., N. Philippon, and B. Fontaine, 2003: Skill of Sahel rainfall variability in four atmospheric GCMs forced by prescribed SST. Geophys. Res. Lett., 30 .2221, doi:10.1029/2003GL018006.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Olson, J. S., 1994a: Global ecosystem framework—Definitions. USGS EROS Data Center International Rep., Sioux Falls, SD, 37 pp.

  • Olson, J. S., 1994b: Global ecosystem framework—Translation strategy. USGS EROS Data Center International Rep., Sioux Falls, SD, 39 pp.

  • Patterson, K. A., 1990: Global distributions of total and total-available soil water-holding capacities. M.S. thesis, Dept. of Geography, University of Delaware, 199 pp.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Polcher, J., 1994: Etude de la sensibilité du climat tropicale à la deforestation. Ph.D. thesis, Université Pierre et Marie Curie, 185 pp.

  • Polcher, J., and K. Laval, 1994: A statistical study of the regional impact of deforestation on climate in the LMD GCM. Climate Dyn., 10 , 209219.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., and Coauthors, 1998: A proposal for a general interface between land surface schemes and general circulation models. Global Planet. Change, 19 , 261276.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Max-Planck-Institut für Meteorologie Rep. 93, Hamburg, Germany, 172 pp.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, Hamburg, Germany, 86 pp.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Schulz, J-P., L. Dümenil, J. Polcher, C. A. Schlosser, and Y. Xue, 1998: Land surface energy and moisture fluxes: Comparing three models. J. Appl. Meteor., 37 , 288307.

    • Search Google Scholar
    • Export Citation
  • Schulz, J-P., L. Dümenil, and J. Polcher, 2001: On the land surface–atmosphere coupling and its impact in a single-column atmospheric model. J. Appl. Meteor., 40 , 642663.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration and the earth’s climate. Science, 219 , 14981501.

  • Stendel, M., and E. Roeckner, 1998: Impacts of horizontal resolution on simulated climate statistics in ECHAM-4. Max-Planck-Institut für Meteorologie Rep. 253, Hamburg, Germany, 57 pp.

  • Stewart, J. B., 1977: Evaporation from the wet canopy of a pine forest. Water Resour. Res., 13 , 915921.

  • Stull, R. B., 1997: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor., 27 , 10361054.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. C., 1980: Response to “A comment on the cause of the diurnal and annual temperature cycles.”. Bull. Amer. Meteor. Soc., 61 , 1411.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., P. Viterbo, and S. O. Los, 2003: Impact of leaf area index seasonality on the land surface evaporation in a general circulation model. J. Geophys. Res., 108 .4191, doi:10.1029/2002JD002846.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrast between the Indian and the western North Pacific–east Asian monsoons. J. Climate, 14 , 40734090.

    • Search Google Scholar
    • Export Citation
  • Warrilow, D. A., A. B. Sangster, and A. Slingo, 1986: Modeling of land surface processes and their influence on European climate. Met Office Tech. Note DCTN 38, 92 pp.

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and K-M. Lau, 1998: Influences of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11 , 32303246.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 77 0
PDF Downloads 78 43 0

Effects of Land Surface–Vegetation on the Boreal Summer Surface Climate of a GCM

View More View Less
  • 1 National Institute of Geophysics and Volcanology, Bologna, Italy
  • | 2 Institut Pierre Simon Laplace, Paris, France
  • | 3 National Institute of Geophysics and Volcanology, Bologna, Italy
Restricted access

Abstract

A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate.

To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions.

The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas.

Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone.

Corresponding author address: Andrea Alessandri, National Institute of Geophysics and Volcanology, Via Creti, 12, I-40128 Bologna, Italy. Email: alessandri@bo.ingv.it

Abstract

A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate.

To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions.

The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas.

Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone.

Corresponding author address: Andrea Alessandri, National Institute of Geophysics and Volcanology, Via Creti, 12, I-40128 Bologna, Italy. Email: alessandri@bo.ingv.it

Save