• Adams, R., and Coauthors, 2000: The economics of sustained ocean observations: Benefits and rationale for public funding. NOAA/Office of Naval Research Joint Rep., 58 pp.

  • Alley, R. B., and Coauthors, 2003: Abrupt climate change. Science, 299 , 20052010.

  • Baehr, J., J. Hirschi, J. O. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62 , 283312.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., K. Keller, and J. Marotzke, 2007: Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic. Climatic Change, in press.

    • Search Google Scholar
    • Export Citation
  • Banks, H., and R. Wood, 2002: Where to look for anthropogenic climate change in the ocean. J. Climate, 15 , 879891.

  • Bradford, D. F., 1999: On the uses of benefit-cost reasoning in choosing policy toward global climate change. Discounting and Intergenerational Equity, P. R. Portney and J. P. Weyant, Eds., Resources for the Future Press, 37–44.

  • Bradford, D. F., and H. H. Kelejian, 1977: The value of information for crop forecasting in a market system: Some theoretical issues. Rev. Econ. Stud., 44 , 519531.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Bryan, K., 1987: Potential vorticity in models of the ocean circulation. Quart. J. Roy. Meteor. Soc., 113 , 713734.

  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438 , 655657.

    • Search Google Scholar
    • Export Citation
  • Buonanno, P., C. Carraro, and M. Galeotti, 2003: Endogenous induced technical change and the costs of Kyoto. Resour. Energy Econ., 25 , 1134.

    • Search Google Scholar
    • Export Citation
  • Challenor, P. G., R. K. S. Hankin, and R. Marsh, 2006: Towards the probability of rapid climate change. Avoiding Dangerous Climate Change, H. J. Schellnhuber et al., Eds., Cambridge University Press, 55–63.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and G. A. Meehl, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 526–582.

  • Dickson, B., I. Yashayaev, J. Meincke, B. Turell, S. Dye, and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416 , 832837.

    • Search Google Scholar
    • Export Citation
  • Dowlatabadi, H., 1995: Integrated assessment models of climate change. Energy Policy, 23 , 289296.

  • Draper, D., 1995: Assessment and propagation of model uncertainty. J. Roy. Stat. Soc. B, 57 , 4597.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32 .L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., K. Keller, and R. M. Key, 2000: What story is told by oceanic tracer concentrations? Science, 290 , 455456.

  • Grubler, A., 1991: Diffusion: Long-term patterns and discontinuities. Technol. Forecasting Soc. Change, 39 , 159180.

  • Hasselmann, K., 1998: Conventional and Bayesian approach to climate-change detection and attribution. Quart. J. Roy. Meteor. Soc., 124 , 25412565.

    • Search Google Scholar
    • Export Citation
  • Held, H., and T. Kleinen, 2004: Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett., 31 .L23207, doi:10.1029/2004GL020972.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., J. Baehr, J. Marotzke, J. Stark, S. Cunningham, and J-O. Beismann, 2003: A monitoring design for the Atlantic meridional overturning circulation. Geophys. Res. Lett., 30 .1413, doi:10.1029/2002GL016776.

    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14 , 382401.

  • Johnson, S. R., and M. T. Holt, 1997: The value of weather information. Economic Value of Weather and Climate Forecasts, R. W. Katz and A. H. Murphy, Eds., Cambridge University Press, 75–107.

    • Search Google Scholar
    • Export Citation
  • Joos, F., G-K. Plattner, T. F. Stocker, A. Koertzinger, and D. W. R. Wallace, 1996: Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget. Tellus, 48B , 397417.

    • Search Google Scholar
    • Export Citation
  • Kahneman, D., and A. Tversky, 1979: Prospect theory: An analysis of decision under risk. Econometrica, 47 , 263291.

  • Katz, R. W., and A. H. Murphy, 1997: Forecast value: Prototype decision-making models. Economic Value of Weather and Climate Forecasts, R. W. Katz and A. H. Murphy, Eds., Cambridge University Press, 183–217.

    • Search Google Scholar
    • Export Citation
  • Keller, K., K. Tan, F. M. M. Morel, and D. F. Bradford, 2000: Preserving the ocean circulation: Implications for climate policy. Climate Change, 47 , 1743.

    • Search Google Scholar
    • Export Citation
  • Keller, K., R. Slater, M. Bender, and R. M. Key, 2002: Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization. Deep-Sea Res. II, 49 , 345362.

    • Search Google Scholar
    • Export Citation
  • Keller, K., M. G. Hall, Z. Yang, and D. F. Bradford, 2003: Carbon dioxide sequestration: When and how much? Center for Economic Policy Studies Working Paper 94, 23 pp.

  • Keller, K., B. M. Bolker, and D. F. Bradford, 2004: Uncertain climate thresholds and optimal economic growth. J. Environ. Econ. Manage., 48 , 723741.

    • Search Google Scholar
    • Export Citation
  • Keller, K., M. Hall, S-R. Kim, D. F. Bradford, and M. Oppenheimer, 2005: Avoiding dangerous anthropogenic interference with the climate system. Climate Change, 73 , 227238.

    • Search Google Scholar
    • Export Citation
  • Keller, K., S. Kim, J. Baehr, D. F. Bradford, and M. Oppenheimer, 2007a: What is the economic value of information about uncertain climate thresholds? Human-Induced Climate Change: An Interdisciplinary Assessment, M. Schlesinger et al., Eds., Cambridge University Press, in press.

  • Keller, K., G. Yohe, and M. Schlesinger, 2007b: Managing the risks of climate thresholds: Uncertainties and information needs—An editorial essay. Climatic Change, in press.

    • Search Google Scholar
    • Export Citation
  • Kleinen, T., H. Held, and G. Petschel-Held, 2003: The potential role of spectral properties in detecting thresholds in the Earth system: Application to the thermohaline circulation. Ocean Dyn., 53 , 5363.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and T. F. Stocker, 2002: Limited predictability of the future thermohaline circulation close to an instability threshold. J. Climate, 15 , 179186.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2004: Optimal observations for variational data assimilation. J. Phys. Oceanogr., 34 , 529542.

  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Lempert, R. J., 2002: A new decision sciences for complex systems. . Proc. Natl. Acad. Sci. USA, 99 , 73097313.

  • Lempert, R. J., and M. E. Schlesinger, 2000: Robust strategies for abating climate change—An editorial essay. Climatic Change, 45 , 387401.

    • Search Google Scholar
    • Export Citation
  • Lempert, R. J., M. E. Schlesinger, and J. K. Hammitt, 1994: The impact of potential abrupt climate changes on near-term policy choices. Climatic Change, 26 , 351376.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. + 17 microfiche.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382 , 436439.

  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 523.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1999: The role of thermohaline circulation in climate. Tellus, 51A , 91109.

  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Manne, A. S., and R. Richels, 1991: Buying greenhouse insurance. Energy Policy, 19 , 543552.

  • Matear, R. J., A. C. Hirst, and B. I. McNeil, 2000: Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosyst.,, 1 .doi:10.1029/2000GC000086.

    • Search Google Scholar
    • Export Citation
  • McInerney, D., and K. Keller, 2007: Economically optimal risk reduction strategies in the face of uncertain climate thresholds. Climatic Change, in press.

    • Search Google Scholar
    • Export Citation
  • Newell, R. G., and W. Pizer, 2003: Discounting the distant future: How much do uncertain rates increase valuations? J. Environ. Econ. Manage., 46 , 5271.

    • Search Google Scholar
    • Export Citation
  • Nordhaus, W. D., 1994: Managing the Global Commons: The Economics of Climate Change. MIT Press, 213 pp.

  • Nordhaus, W. D., and D. Popp, 1997: What is the value of scientific knowledge? An application to global warming using the PRICE model. Energy J., 18 , 145.

    • Search Google Scholar
    • Export Citation
  • Peacock, S., M. Visbeck, and W. Broecker, 2000: Deep water formation rates inferred from global tracer distributions: An inverse approach. Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 185–195.

  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17 , 44634472.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1999: Decadal variability of the thermohaline ocean circulation. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarro, Ed., Springer-Verlag, 309–332.

  • Rahmstorf, S., 2000: The thermohaline ocean circulation: A system with a dangerous threshold? Climatic Change, 46 , 247256.

  • Ramsey, F., 1928: A mathematical theory of saving. Econ. J., 37 , 543559.

  • Santer, B. J., U. Mikolajewicz, W. Brüggeman, U. Cubasch, K. Hasselman, H. Höck, E. Maier-Reimer, and T. M. L. Wigley, 1995: Ocean variability and its influence on the detectability of greenhouse warming signals. J. Geophys. Res., 100 , 1069310725.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean–atmosphere general circulation model. Climate Dyn., 13 , 325347.

    • Search Google Scholar
    • Export Citation
  • Schlosser, P., G. Bönisch, M. Rhein, and R. Bayer, 1991: Reduction of deepwater formation in the Greenland Sea during the 1980’s: Evidence from tracer data. Science, 251 , 10541056.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., and T. F. Stocker, 1999: The stability of the thermohaline circulation in global warming experiments. J. Climate, 12 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32 .L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., J. Church, and J. Gould, 2001: Ocean Circulation and Climate: Modelling and Observing the Global Ocean. Academic Press, 715 pp.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., and R. A. Fine, 2001: Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res., 48 , 189215.

    • Search Google Scholar
    • Export Citation
  • Smith, J. B., H-J. Schellnhuber, and M. M. Q. Mirza, 2001: Vulnerability to climate change and reasons for concern: A Synthesis. Climate Change 2001, Impacts, Adaptation, and Vulnerability, J. McCarthy et al., Eds., Cambridge University Press, 913–967.

  • Solow, A. R., R. F. Adams, K. J. Bryant, D. M. Legler, J. J. O’Brien, B. A. McCarl, W. Nayda, and R. Weiher, 1998: The value of improved ENSO prediction to U.S. agriculture. Climatic Change, 39 , 4760.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and A. Schmittner, 1997: Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388 , 862865.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R., and S. Manabe, 1999: Response of a coupled ocean–atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase. J. Climate, 12 , 22242237.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
  • Tol, R. S. J., 1998: Potential slowdown of the thermohaline circulation and climate policy. Institute for Environmental Studies, Vrije Universiteit Discussion Paper DS98/06, 7 pp.

  • Tol, R. S. J., 2005: The marginal damage costs of carbon dioxide emissions: An assessment of the uncertainties. Energy Policy, 33 , 20642074.

    • Search Google Scholar
    • Export Citation
  • Tol, R. S. J., and A. de Vos, 1998: A Bayesian statistical analysis of the enhanced greenhouse effect. Climatic Change, 38 , 87112.

  • Toth, F. L., G. Petschel-Held, and T. Bruckner, 1998: Kyoto and the long term climate stabilization. Economic Modeling of Climate Change, OECD Workshop Rep., 307–328.

  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., R. Richels, and J. A. Edmonds, 1996: Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379 , 240243.

    • Search Google Scholar
    • Export Citation
  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1992: Decade-to-century changes in the ocean circulation. Oceanography, 5 , 99106.

  • Zellner, A., and G. C. Tian, 1964: Bayesian analysis of the regression model with autocorrelated errors. J. Amer. Stat. Assoc., 59 , 763778.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., and T. Bruckner, 2003: Reducing the risk of abrupt climate change: Emissions corridors preserving the Atlantic thermohaline circulation. Integr. Assess., 4 , 106115.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 46 2
PDF Downloads 95 9 0

Early Detection of Changes in the North Atlantic Meridional Overturning Circulation: Implications for the Design of Ocean Observation Systems

View More View Less
  • 1 Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 School of Oceanography, University of Washington, Seattle, Washington
  • | 3 Brookings Institution, Washington, D.C
  • | 4 Department of Economics, and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey, and School of Law, New York University, New York, New York
Restricted access

Abstract

Many climate models predict that anthropogenic greenhouse gas emissions may cause a threshold response of the North Atlantic meridional overturning circulation (MOC). These model predictions are, however, uncertain. Reducing this uncertainty can have an economic value, because it would allow for the design of more efficient risk management strategies. Early information about the MOC sensitivity to anthropogenic forcing (i.e., information that arrives before the system is committed to a threshold response) could be especially valuable. Here the focus is on one particular kind of information: the detection of anthropogenic MOC changes. It is shown that an MOC observation system based on infrequent (decadal scale) hydrographic observations may well fail in the task of early MOC change detection. This is because this system observes too infrequently and the observation errors are too large. More frequent observations and reduced observation errors would result in earlier detection. It is also shown that the economic value of information associated with a confident and early prediction of an MOC threshold response could exceed the costs of typically implemented ocean observation systems by orders of magnitude. One open challenge is to identify a feasible observation system that would enable such a confident and early MOC prediction across the range of possible MOC responses.

* Current affiliation: Department of Economics, University of Michigan, Ann Arbor, Michigan

+ Deceased

Corresponding author address: Klaus Keller, 208 Deike Building, University Park, PA 16802-2714. Email: kkeller@geosc.psu.edu

Abstract

Many climate models predict that anthropogenic greenhouse gas emissions may cause a threshold response of the North Atlantic meridional overturning circulation (MOC). These model predictions are, however, uncertain. Reducing this uncertainty can have an economic value, because it would allow for the design of more efficient risk management strategies. Early information about the MOC sensitivity to anthropogenic forcing (i.e., information that arrives before the system is committed to a threshold response) could be especially valuable. Here the focus is on one particular kind of information: the detection of anthropogenic MOC changes. It is shown that an MOC observation system based on infrequent (decadal scale) hydrographic observations may well fail in the task of early MOC change detection. This is because this system observes too infrequently and the observation errors are too large. More frequent observations and reduced observation errors would result in earlier detection. It is also shown that the economic value of information associated with a confident and early prediction of an MOC threshold response could exceed the costs of typically implemented ocean observation systems by orders of magnitude. One open challenge is to identify a feasible observation system that would enable such a confident and early MOC prediction across the range of possible MOC responses.

* Current affiliation: Department of Economics, University of Michigan, Ann Arbor, Michigan

+ Deceased

Corresponding author address: Klaus Keller, 208 Deike Building, University Park, PA 16802-2714. Email: kkeller@geosc.psu.edu

Save