• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , (D24). 3214132157.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419 , 224232.

  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45 , 434454.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47 , 9599.

  • Bjerknes, J., and J. Holmboe, 1944: On the theory of cyclones. J. Meteor., 1 , 122.

  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130 , 375399.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120 , 15351557.

  • Browning, K. A., and N. M. Roberts, 1996: Variation of frontal and precipitation structure along a cold front. Quart. J. Roy. Meteor. Soc., 122 , 18451872.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1998: Mid-Latitude Weather Systems. Amer. Meteor. Soc., 507 pp.

  • Carnell, R. E., and C. A. Senior, 1998: Changes in mid latitude variability due to increasing greenhouse gases and sulphate aerosols. Climate Dyn., 14 , 369383.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and S. W. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63 , 815839.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133 , 409429.

    • Search Google Scholar
    • Export Citation
  • Chevalier, F., P. Bauer, G. Kelly, C. Jakob, and T. McNally, 2001: Model clouds over oceans as seen from space: Comparison with HIRS/2 and MSU radiances. J. Climate, 14 , 42164229.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. F., W. J. Plant, W. C. Keller, K. Hayes, and J. Nystuen, 2003: Effects of rain on Ku-band backscatter from the ocean. J. Geophys. Res., 108 .3165, doi:10.1029/2001JC001255.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and P. J. Webster, 1999: Thermodynamics of Atmospheres and Oceans. International Geophysics Series, Vol. 65, Academic Press, 471 pp.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17 , 218237.

    • Search Google Scholar
    • Export Citation
  • Evans, M. S., D. Keyser, L. F. Bosart, and G. M. Lackmann, 1994: A satellite-derived classification scheme for rapid maritime cyclogenesis. Mon. Wea. Rev., 122 , 13811416.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16 , 28022805.

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal-variation of cloud radiative forcing derived from the earth radiation budget experiment. J. Geophys. Res., 95 , 1868718703.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99 , 232251.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. International Geophysics Series, Vol. 56, Academic Press, 411 pp.

  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere cyclone tracks. J. Climate, 18 , 41084129.

  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, W. S. Olson, C. D. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82 , 659679.

    • Search Google Scholar
    • Export Citation
  • Janiskova, M., J. F. Mahfouf, and J. J. Morcrette, 2002: Preliminary studies on the variational assimilation of cloud-radiation observations. Quart. J. Roy. Meteor. Soc., 128 , 27132736.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • King, M. D., Y. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectroradiometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30 , 227.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. E. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document ATBD-MOD-05, NASA, 78 pp.

  • King, M. D., W. P. Menzel, and Y. Kaufman, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from modis. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Berg, J. Thomas-Stahle, and H. Masunaga, 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23 , 2337.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123 , 19842006.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic scale circulation systems. Mon. Wea. Rev., 125 , 31723189.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Quart. J. Roy. Meteor. Soc., 128 , 17131737.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12 , 10661069.

  • Ma, X., Z. Wan, C. Moeller, W. Menzel, L. Gumley, and Y. Zhang, 2000: Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Appl. Opt., 39 , 35373550.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121 , 21772199.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., and E. O. Holopainen, Eds. 1990: Extratropical Cyclones: The Erik Palmen Memorial Volume. Amer. Meteor. Soc., 262 pp.

  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18 , 48624878.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. J. Atmos. Sci., 28 , 325339.

  • Paciorek, C. J., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15 , 15731590.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., D. L. Bradbury, and K. Pedersen, 1962: The Norwegian cyclone models in relation to heat and cold sources. Geophys. Publ., 24 , 243280.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., M. Szczodrak, J. Gu, and P. Austin, 1995: Uncertainty in cloud optical depth estimates made from satellite radiance measurements. J. Climate, 8 , 14531462.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Shapiro, M. A., and S. Grønas, 1999: The Life Cycle of Extratropical Cyclones. Amer. Meteor. Soc., 359 pp.

  • Sinclair, M. R., 2002: Extratropical transition of Southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130 , 590609.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., and I. G. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12 , 34673485.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84 , 18071826.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16 , 37053721.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33 .L02704, doi:10.1029/2005GL024513.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. C. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13 , 312327.

    • Search Google Scholar
    • Export Citation
  • Wang, C-C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129 , 14811499.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102 , 87038718.

  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55 , 16131627.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and D. K. Smith, 1999: A model function for the ocean normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1149911514.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: AMSR Ocean Algorithm. Algorithm Theoretical Basis Document Tech. Rep. version 2, Remote Sensing Systems, Santa Rosa, CA, 59 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1254 672 56
PDF Downloads 989 546 26

Precipitation and Cloud Structure in Midlatitude Cyclones

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 University of Washington, Seattle, Washington
Restricted access

Abstract

Composite mean fields and probability distribution functions (PDFs) of rain rate, cloud type and cover, cloud-top temperature, surface wind velocity, and water vapor path (WVP) are constructed using satellite observations of midlatitude cyclones from four oceanic regions (i.e., the North Pacific, South Pacific, North Atlantic, and South Atlantic). Reanalysis surface pressure fields are used to ascertain the locations of the cyclone centers, onto which the satellite fields are interpolated to give a database of ∼1500 cyclones from a two-year period (2003–04). Cyclones are categorized by their strength, defined here using surface wind speed, and by their WVP, and it is found that these two measures can explain a considerable amount of the intercyclone variability of other key variables. Composite cyclones from each of the four ocean basins exhibit similar spatial structure for a given strength and WVP. A set of nine composites is constructed from the database using three strength and three WVP ranges and is used to demonstrate that the mean column relative humidity of these systems varies only slightly (0.58–0.62) for a doubling in WVP (or equivalently a 7-K rise in sea surface temperature) and a 50% increase in cyclone strength. However, cyclone-mean rain rate increases markedly with both cyclone strength and WVP, behavior that is explained with a simple warm conveyor belt model. Systemwide high cloud fraction (tops above 440 hPa) increases from 0.23 to 0.31 as cyclone strength increases by 50%, but does not vary systematically with WVP. It is suggested that the composite fields constitute useful diagnostics for evaluating the behavior of large-scale numerical models, and may provide insight into how precipitation and clouds in midlatitude cyclones respond under a changed climate.

Corresponding author address: Paul Field, NCAR, 3450 Mitchell Lane, Boulder, CO 80301. Email: prfield@ucar.edu

Abstract

Composite mean fields and probability distribution functions (PDFs) of rain rate, cloud type and cover, cloud-top temperature, surface wind velocity, and water vapor path (WVP) are constructed using satellite observations of midlatitude cyclones from four oceanic regions (i.e., the North Pacific, South Pacific, North Atlantic, and South Atlantic). Reanalysis surface pressure fields are used to ascertain the locations of the cyclone centers, onto which the satellite fields are interpolated to give a database of ∼1500 cyclones from a two-year period (2003–04). Cyclones are categorized by their strength, defined here using surface wind speed, and by their WVP, and it is found that these two measures can explain a considerable amount of the intercyclone variability of other key variables. Composite cyclones from each of the four ocean basins exhibit similar spatial structure for a given strength and WVP. A set of nine composites is constructed from the database using three strength and three WVP ranges and is used to demonstrate that the mean column relative humidity of these systems varies only slightly (0.58–0.62) for a doubling in WVP (or equivalently a 7-K rise in sea surface temperature) and a 50% increase in cyclone strength. However, cyclone-mean rain rate increases markedly with both cyclone strength and WVP, behavior that is explained with a simple warm conveyor belt model. Systemwide high cloud fraction (tops above 440 hPa) increases from 0.23 to 0.31 as cyclone strength increases by 50%, but does not vary systematically with WVP. It is suggested that the composite fields constitute useful diagnostics for evaluating the behavior of large-scale numerical models, and may provide insight into how precipitation and clouds in midlatitude cyclones respond under a changed climate.

Corresponding author address: Paul Field, NCAR, 3450 Mitchell Lane, Boulder, CO 80301. Email: prfield@ucar.edu

Save