• An, S-I., and F-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17 , 23992412.

  • Boer, G. J., B. Yu, S-J. Kim, and G. M. Flato, 2004: Is there observational support for an El-Niño-like pattern of future global warming? Geophys. Res. Lett., 31 .L06201, doi:10.1029/2003GL018722.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26 , 10271030.

  • Cobb, K., C. Charles, H. Cheng, and R. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2000a: The El Niño–Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming. J. Climate, 13 , 12991312.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2000b: Understanding uncertainties in the response of ENSO to greenhouse warming. Geophys. Res. Lett., 27 , 35093513.

  • Collins, M., and CMIP Modeling Groups, 2005: El Niño or La Niña-like climate change? Climate Dyn., 24 , 89104.

  • Dai, A., K. E. T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., E. R. Cook, R. J. Wilson, R. Allan, and M. E. Mann, 2005: On the variability of ENSO over the past six centuries. Geophys. Res. Lett., 32 .L03711, doi:10.1029/2004GL022055.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dunbar, R. B., G. M. Wellington, M. W. Colgan, and P. W. Glymn, 1994: Eastern Pacific sea surface temperature since 1600 A. D.: The δ18 record of climate variability in Galapagos coral. Paleoceanography, 9 , 291315.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18 , 52245238.

  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Nino changing? Science, 288 , 19972002.

  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the Tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. Stephenson, and K. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20 , 241256.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2000: Climate modeling in the global warming debate. General Circulation Model Development, D. Randall, Ed., Academic Press, 127–164.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28 , 473485.

  • Hasumi, H., and S. Emori, 2004: Coupled GCM (MIROC) description. K-1 Tech. Rep. 1, 34 pp.

  • Jin, F-F., S-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30 .1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., K. Pegion, and S. Kinter, 2005: Internal atmospheric dynamics and climate variability. J. Atmos. Sci., 62 , 22202233.

  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., S. Manabe, and D. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10 , 138161.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., and Coauthors, 2004: Triggering of El Nino by westerly wind events in a coupled general circulation model. Climate Dyn., 23 , 601620.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Wu, R. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett., 29 .1404, doi:10.1029/2001GL013735.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 2000: Long-term variability in the ENSO and associated teleconnections. ENSO: Multiscale Variability and Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 357–412.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2001: Nonlinear principal component analysis: Tropical Indo-Pacific sea surface temperature and sea level pressure. J. Climate, 14 , 219233.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., and A. Dai, 2004: The spatial and temporal structure of ENSO nonlinearity. J. Climate, 17 , 30263036.

  • Nonaka, M., S-P. Xie, and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29 .1116, doi:10.1029/2001GL013717.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., 2004: A simple mechanism for ENSO residuals and asymmetry. COLA Tech. Rep. 170, 37 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Stahle, D., and Coauthors, 1998: Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull. Amer. Meteor. Soc., 79 , 21372152.

    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, C. Penland, and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62 , 13911409.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Timmermann, A., 2001: Changes of ENSO stability due to greenhouse warming. Geophys. Res. Lett., 28 , 20612064.

  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 393 , 694697.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and D. J. Shea, 1987: On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115 , 30783096.

  • Trenberth, K., and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24 , 30573060.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • White, H. G., 1980: Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon. Wea. Rev., 108 , 14461455.

    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Zhang, Y. Zhong, S. Vavrus, and Z. Liu, 2005: How does extratropical warming affect ENSO? Geophys. Res. Lett., 32 .L01702, doi:10.1029/2004GL021624.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2005: Pacific decadal variability and decadal ENSO amplitude modulation. Geophys. Res. Lett., 32 .L05703, doi:10.1029/2004GL021731.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108 .3128, doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2001: The new Meteorological Research Institute coupled GCM (MRI-CGCM2)—Model climate and variability. Pap. Meteor. Geophys., 51 , 4788.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 200 11
PDF Downloads 283 158 5

ENSO Amplitude Changes due to Climate Change Projections in Different Coupled Models

View More View Less
  • 1 Korea Ocean Research & Development Institute, Ansan, South Korea
  • | 2 George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
Restricted access

Abstract

Four climate system models are chosen here for an analysis of ENSO amplitude changes in 4 × CO2 climate change projections. Despite the large changes in the tropical Pacific mean state, the changes in ENSO amplitude are highly model dependant. To investigate why similar mean state changes lead to very different ENSO amplitude changes, the characteristics of sea surface temperature anomaly (SSTA) variability simulated in two coupled general circulation models (CGCMs) are analyzed: the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models. The skewed distribution of tropical Pacific SSTA simulated in the MRI model suggests the importance of nonlinearities in the ENSO physics, whereas the GFDL model lies in the linear regime. Consistent with these differences in ENSO regime, the GFDL model is insensitive to the mean state changes, whereas the MRI model is sensitive to the mean state changes associated with the 4 × CO2 scenario. Similarly, the low-frequency modulation of ENSO amplitude in the GFDL model is related to atmospheric stochastic forcing, but in the MRI model the amplitude modulation is insensitive to the noise forcing. These results suggest that the understanding of changes in ENSO statistics among various climate change projections is highly dependent on whether the model ENSO is in the linear or nonlinear regime.

Corresponding author address: Dr. Sang-Wook Yeh, Korea Ocean Research & Development Institute, Ansan, P.O. Box 29, 425-600, South Korea. Email: swyeh@kordi.re.kr

Abstract

Four climate system models are chosen here for an analysis of ENSO amplitude changes in 4 × CO2 climate change projections. Despite the large changes in the tropical Pacific mean state, the changes in ENSO amplitude are highly model dependant. To investigate why similar mean state changes lead to very different ENSO amplitude changes, the characteristics of sea surface temperature anomaly (SSTA) variability simulated in two coupled general circulation models (CGCMs) are analyzed: the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models. The skewed distribution of tropical Pacific SSTA simulated in the MRI model suggests the importance of nonlinearities in the ENSO physics, whereas the GFDL model lies in the linear regime. Consistent with these differences in ENSO regime, the GFDL model is insensitive to the mean state changes, whereas the MRI model is sensitive to the mean state changes associated with the 4 × CO2 scenario. Similarly, the low-frequency modulation of ENSO amplitude in the GFDL model is related to atmospheric stochastic forcing, but in the MRI model the amplitude modulation is insensitive to the noise forcing. These results suggest that the understanding of changes in ENSO statistics among various climate change projections is highly dependent on whether the model ENSO is in the linear or nonlinear regime.

Corresponding author address: Dr. Sang-Wook Yeh, Korea Ocean Research & Development Institute, Ansan, P.O. Box 29, 425-600, South Korea. Email: swyeh@kordi.re.kr

Save