• Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Beismann, J. O., and B. Barnier, 2004: Variability of the meridional overturning circulation of the North Atlantic: Sensitivity to the overflow of dense water masses. Ocean Dyn., 54 , 92106.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and S. Hagemann, 2004a: Sensitivity of the ERA-40 reanlaysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A , 456471.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004b: Can climate trends be calculated form reanalysis data? J. Geophys. Res., 109 .D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

  • Cardinali, C., S. Pezzulli, and E. Andersson, 2004: Influence matrix diagnostic of a data assimilation system. Quart. J. Roy. Meteor. Soc., 130 , 27672786.

    • Search Google Scholar
    • Export Citation
  • Cardone, J. S., J. G. Greenwood, and M. A. Cane, 1990: On trends in historical marine wind data. J. Climate, 3 , 113127.

  • Cayan, D., 1992a: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.–Ocean, 30 , 142.

  • Cayan, D., 1992b: Latent and sensible heat flux anomalies over the Northern Oceans: The connection to monthly atmospheric circulation. J. Climate, 5 , 354369.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2005: Effects of secular changes in frequency of observations and observational errors on monthly mean MSLP summary statistics derived from ICOADS. J. Climate, 18 , 36233633.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over Global Oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., M. S. McCartney, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature, 391 , 575577.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Anomalies of Directly Observed Quantities. Vol. 2, Atlas of Surface Marine Data. NOAA Atlas NESDIS 2, 419 pp.

  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14 , 676691.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanisms of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14 , 676691.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., and R. W. Reynolds, 1981: Estimating monthly averaged air-sea transfers of heat and momentum using the bulk aerodynamic method. J. Phys. Oceanogr., 11 , 457465.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., 1994: Influence of space–time averaging on the ocean–atmosphere exchange estimates in the North Atlantic midlatitudes. J. Phys. Oceanogr., 24 , 12361255.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., 1995: Long-term variability of sea-air heat transfer in the North Atlantic Ocean. Int. J. Climatol., 15 , 825852.

  • Gulev, S. K., 1997: Climatologically significant effects of space–time averaging in the North Atlantic sea–air heat flux fields. J. Climate, 10 , 27432763.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., B. Barnier, H. Knochel, J-M. Molines, and M. Cottet, 2003: Water mass transformation in the North Atlantic and its impact on the meridional circulation: Insights from an ocean model forced by NCEP–NCAR reanalysis surface fluxes. J. Climate, 16 , 30853110.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I: Uncertainties in climate means. J. Climate, 20 , 279301.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1999: Variability in the simulated meridional heat transport in the North Atlantic for the period 1951–1993. J. Geophys. Res., 104 , 1099111007.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and Y. Toba, 1987: Critical examination of estimation methods of long-term mean air-sea heat and momentum transfers. Ocean-Air Interactions, 1 , 7993.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Iwasaka, N., and J. M. Wallace, 1995: Large-scale air-sea interaction in the Northern Hemisphere from a view point of variations of surface heat flux by SVD analysis. J. Meteor. Soc. Japan, 73 , 781794.

    • Search Google Scholar
    • Export Citation
  • Josey, S., and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110 .C05008, doi:10.1029/2004JC2521.

    • Search Google Scholar
    • Export Citation
  • Josey, S., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Jung, T., E. Klinker, and S. Uppala, 2004: Reanalysis and reforecast of three major European storms of the twentieth century using the ECMWF forecasting system. Part I: Analyses and deterministic forecasts. Meteor. Appl., 11 , 343361.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modelling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajaopalan, 1998: Analyses of global sea surface temperatures 1856-1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Y. Kushnir, and M. A. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13 , 29873002.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, and Y. Kushnir, 2003: Reduced space approach to the optimal analysis interpolation of historical marine observations: Accomplishments, difficulties, and prospects. Advances in the Applications of Marine Climatology, World Meteorological Organization, WMO Tech. Doc. 1081, 199–216.

  • Kent, E. C., P. K. Taylor, B. S. Truscott, and J. S. Hopkins, 1993: The accuracy of voluntary observing ships’ meteorological observations—Results of the VSOP-NA. J. Atmos. Oceanic Technol., 10 , 591608.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and D. I. Berry, 2007: Metadata from WMO publication no. 47 and an assessment of voluntary observing ship observation heights in ICOADS. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 142157.

    • Search Google Scholar
    • Export Citation
  • LabSea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull Amer. Meteor. Soc., 79 , 20332058.

  • Lindau, R., 2003: Errors of Atlantic air–sea fluxes derived from ship observations. J. Climate, 16 , 783788.

  • Lindau, R., H-J. Isemer, and L. Hasse, 1990: Towards time-dependent calibration of historical wind observations at sea. Trop. Ocean-Atmos. Newsl., 54 , 712.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., C. K. Folland, and M. Jackson, 1995: Marine surface temperature: Observed variations and data requirements. Climatic Change, 31 , 559600.

    • Search Google Scholar
    • Export Citation
  • Peterson, E. W., and L. Hasse, 1987: Did the Beaufort scale or the wind climate change? J. Phys. Oceanogr., 17 , 10711074.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement of skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Sterl, A., 2001: On the accuracy of gap-filling algorithms in global surface fields. Geophys. Res. Lett., 28 , 24732476.

  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17 , 38663873.

  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extretropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108 .3304, doi:10.1029/2002JC001750.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 503 pp.

  • Ward, N. M., and B. J. Hoskins, 1996: Near surface wind over the global ocean 1949–1988. J. Climate, 9 , 18771895.

  • White, G., 2000: Long-term trends in the NCEP/NCAR reanalysis. Proc. Second Int. Conf. on Reanalyses, Reading, United Kingdom, ECMWF, WCRP-109, WMO Tech. Doc. 985, 54–57.

  • Wolter, K., 1997: Trimming problems and remedies in COADS. J. Climate, 10 , 19801997.

  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004: Mean and variability of the WHOI daily latent and sensible heat fluxes at in-situ flux measurement sites in the Atlantic Ocean. J. Climate, 17 , 20962118.

    • Search Google Scholar
    • Export Citation
  • Zhang, H-M., J. J. Bates, and R. W. Reynolds, 2006: Advances in higher resolution Global Ocean Observing System: Sea surface wind speed perspective. Preprints, 14th Conf. on Interaction of the Sea and Atmosphere, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 6.5.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 58 3
PDF Downloads 57 34 2

Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part II: Impact on Trends and Interannual Variability

View More View Less
  • 1 P. P. Shirshov Institute of Oceanology, Moscow, Russia, and IFM-GEOMAR, Kiel, Germany
  • | 2 ECMWF, Reading, United Kingdom
  • | 3 IFM-GEOMAR, Kiel, Germany
Restricted access

Abstract

Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP–NCAR reanalysis fluxes, VOS-like sampled NCEP–NCAR reanalysis fluxes neither show significant interannual variability nor significant trends. These regions, although quite localized covering small parts of the globe, play a crucial role for the coupled atmosphere–ocean system. In the Labrador Sea, for instance, interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are superior to VOS-based products for studying interannual and interdecadal variations of atmosphere–ocean interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal integrations with a recent version of the ECMWF model in which no actual data were assimilated.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117851 Moscow, Russia. Email: gul@sail.msk.ru

Abstract

Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP–NCAR reanalysis fluxes, VOS-like sampled NCEP–NCAR reanalysis fluxes neither show significant interannual variability nor significant trends. These regions, although quite localized covering small parts of the globe, play a crucial role for the coupled atmosphere–ocean system. In the Labrador Sea, for instance, interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are superior to VOS-based products for studying interannual and interdecadal variations of atmosphere–ocean interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal integrations with a recent version of the ECMWF model in which no actual data were assimilated.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117851 Moscow, Russia. Email: gul@sail.msk.ru

Save