• Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17 , 589602.

    • Search Google Scholar
    • Export Citation
  • Bauer, M., A. D. Del Genio, and J. R. Lanzante, 2002: Observed and simulated temperature–humidity relationships: Sensitivity to sampling and analysis. J. Climate, 15 , 203215.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and S. Hagemann, 2004: Sensitivity of the ERA-40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A , 456471.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Search Google Scholar
    • Export Citation
  • Bignami, F., S. Marullo, R. Santorelly, and M. E. Schiano, 1995: Long-wave radiation budget in the Mediterranean Sea. J. Geophys. Res., 100 , 25012514.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability and roughness results due to the use of different transfer coefficient schemes. J. Phys. Oceanogr., 15 , 650669.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1986: The effect of inaccuracies in weather ship data on bulk-derived estimates of flux, stability, and sea-surface roughness. J. Atmos. Oceanic Technol., 3 , 1226.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., N. A. Rayner, M. Vanicek, S. F. B. Tett, and E. C. Kent, 2003: Combined estimates of uncertainties in gridded marine temperature fields due to measurement errors and under-sampling of variability. Proc. Second JCOMM Workshop on Advances in Marine Climatology (CLIMAR-II), Brussels, Belgium, JCOMM, CD-ROM, WMO/TD-No. 1199.

  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16 , 619635.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1992: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.–Ocean, 30 , 142.

  • Chang, E. K. M., 2005: Effects of secular changes in frequency of observations and observational errors on monthly mean MSLP summary statistics derived from ICOADS. J. Climate, 18 , 36233633.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard Satellite Retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner, and J. F. T. Sour, 1974: Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961-71. NOAA Tech. Rep. NMFS SSFR-682, 108 pp.

  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Anomalies of directly observed quantities. Vol. 2, Atlas of Surface Marine Data, NOAA Atlas NESDIS 2, 419 pp.

  • Dobson, F., and S. D. Smith, 1988: Bulk model of solar radiation at sea. Quart. J. Roy. Meter. Soc., 114 , 165182.

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Eymard, L., and Coauthors, 1999: Surface fluxes in the North Atlantic current during CATCH/FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 35633599.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net long-wave radiation at the ocean surface. Rev. Geophys., 22 , 177193.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kallberg, A. Uppala, S. Hernandes, A. Nomura, and A. Serrano, 1999: ERA-15 description. Version 2, ECMWF Reanalysis Project Report Series 1, ECMWF, Reading, United Kingdom, 77 pp.

  • Girdiuk, G. V., T. V. Kirillova, and S. P. Malevsky, 1985: Cloudiness influence on the oceanic albedo. Meteor. Hydrol., 12 , 6369.

  • Gleckler, P., and B. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10 , 27642781.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., 1994: Influence of space–time averaging on the ocean–atmosphere exchange estimates in the North Atlantic midlatitudes. J. Phys. Oceanogr., 24 , 12361255.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., 1995: Long-term variability of sea-air heat transfer in the North Atlantic Ocean. Int. J. Climatol., 15 , 825852.

  • Gulev, S. K., 1999: Comparison of COADS release 1a winds with instrumental measurements in the Northwest Atlantic. J. Atmos. Oceanic Technol., 16 , 133145.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2002: Climatology and interannual variability in the intensity of synoptic-scale processes in the North Atlantic from the NCEP–NCAR reanalysis data. J. Climate, 15 , 809828.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., V. Grigorieva, K. M. Selemenov, and O. Zolina, 2003a: Evaluation of surface winds and waves from voluntary observing ship data. Advances in Applications of Marine Climatology, WMO Guide to the Application in Marine Climatology, WMO, Geneva, Switzerland, 53–67.

  • Gulev, S. K., V. Grigorieva, A. Sterl, and D. Woolf, 2003b: Global climatology of ocean waves from the VOS data. J. Geophys. Res., 108 .3236, doi:10.1029/2002JC001437.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part II: Impact on trends and interannual variability. J. Climate, 20 , 302315.

    • Search Google Scholar
    • Export Citation
  • Hasse, L., and S. D. Smith, 1997: Local sea surface wind, wind stress, and sensible and latent heat fluxes. J. Climate, 10 , 27112724.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14 , 17801789.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., D. Oakley, and R. W. Pascal, 1997: On estimating the atmospheric longwave flux at the ocean surface from ship meteorological reports. J. Geophys. Res., 102 , C13. 2796127972.

    • Search Google Scholar
    • Export Citation
  • Josey, S., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., R. W. Pascal, P. K. Taylor, and M. J. Yelland, 2003: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes. J. Geophys. Res., 108 .3108, doi:10.1029/2002JC001418.

    • Search Google Scholar
    • Export Citation
  • Jung, T., 2005: Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 131 , 10451073.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajaopalan, 1998: Analyses of global sea surface temperatures 1856-1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Y. Kushnir, and M. A. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13 , 29873002.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, and Y. Kushnir, 2003: Reduced space approach to the optimal analysis interpolation of historical marine observations: Accomplishments, difficulties, and prospects. Advances in the Applications of Marine Climatology, World Meteorological Organization, WMO Tech. Doc. 1081, 199–216.

  • Kent, E. C., and P. K. Taylor, 1995: A comparison of sensible and latent heat flux estimates for the North Atlantic Ocean. J. Phys. Oceanogr., 25 , 15301549.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and D. I. Berry, 2005: Quantifying random measurement errors in voluntary observing ship meteorological observations. Int. J. Climatol., 25 , 843852.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. K. Taylor, B. S. Truscott, and J. S. Hopkins, 1993a: The accuracy of voluntary observing ships’ meteorological observations—Results of the VSOP-NA. J. Atmos. Oceanic Technol., 10 , 591608.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., R. J. Tiddy, and P. K. Taylor, 1993b: Correction of marine air temperature observations for solar radiation effects. J. Atmos. Oceanic Technol., 10 , 900906.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. Challenor, and P. K. Taylor, 1999: A statistical determination of the random errors present in VOS meteorological reports. J. Atmos. Oceanic Technol., 16 , 905914.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. K. Taylor, and P. Challenor, 2000: The effect of successive correction on variability estimates for climatological datasets. J. Climate, 13 , 18451857.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and K. E. Trenberth, 1988: Effects of missing data on estimates of monthly mean general circulation statistics. J. Climate, 1 , 12611275.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16 , 670678.

    • Search Google Scholar
    • Export Citation
  • LabSea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79 , 20332058.

  • Large, W. G., and S. Pond, 1982: Sensible and latent heat fluxes over the ocean. J. Phys. Oceanogr., 12 , 463482.

  • Legler, D., 1991: Errors in five-day mean surface wind and temperature conditions due to inadequate sampling. J. Atmos. Oceanic Technol., 8 , 705712.

    • Search Google Scholar
    • Export Citation
  • Lind, R. J., K. B. Katsaros, and M. Gube, 1984: Radiation budget components and their parameterization in JASIN. Quart. J. Roy. Meteor. Soc., 110 , 10611071.

    • Search Google Scholar
    • Export Citation
  • Lindau, R., 2000: Climate Atlas of the Atlantic Ocean Derived from the Comprehensive Ocean-Atmosphere Data Set. Springer-Verlag, 488 pp.

    • Search Google Scholar
    • Export Citation
  • Lo, A. K., and G. A. McBean, 1978: On the relative errors in methods of flux calculations. J. Appl. Meteor., 17 , 17041711.

  • Malevsky, S. P., G. V. Girdiuk, and B. Egorov, 1992: Radiation Balance of the Ocean Surface. Hydrometeoizdat, 148 pp.

  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15 , 20202037.

    • Search Google Scholar
    • Export Citation
  • NCAR, 1999: Comprehensive Ocean-Atmosphere Data Set (COADS): Long marine reports/fixed marine reports (LMR.6/LMRF.6). Release 1a Documentation. [Available online at http://icoads.noaa.gov/e-doc/lmrf.].

  • Niekamp, K., 1992: Untersuchung zur Gute der Parametrizierung von Malevsky-Malevich zur Bestimmung der solaren Einsrahlung an der Oceanoberflache. (Investigation of the skills of Malevsky-Malevich parameterization of short-wave radiation at the ocean surface). M.Sc. thesis, Department of Marine Meteorology, Institut für Meereskunde, Kiel, Germany, 108 pp.

  • Oberhuber, J. M., 1988: An atlas based on the COADS data set: The budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. MPI Rep. 15, 19 pp.

  • Oort, A., 1978: Adequacy of the rawinsonde network for global circulation studies tested through numerical model output. Mon. Wea. Rev., 106 , 174195.

    • Search Google Scholar
    • Export Citation
  • Payne, R. E., 1972: Albedo at the sea surface. J. Atmos. Sci., 29 , 959970.

  • Reed, R. K., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 7 , 482485.

  • Renfrew, J., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface-layer, surface heat flux and surface momentum flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climatol., 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., C. J. C. Reason, J. R. E. Lutjeharms, and A. C. M. Beljaars, 2003: Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J. Climate, 16 , 776782.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., J. Meywerk, S. Ewald, and P. Schlüssel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10 , 27822795.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14 , 40624072.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., J. Servain, D. M. Legler, J. N. Stricherz, M. A. Bourassa, and J. J. O’Brien, 2004: In situ–based pseudo–wind stress products for the tropical oceans. Bull. Amer. Meteor. Soc., 85 , 979994.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Sterl, A., 2001: On the accuracy of gap-filling algorithms in global surface fields. Geophys. Res. Lett., 28 , 24732476.

  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17 , 38663873.

  • Taylor, J. R., 1982: An Introduction to Error Analysis. University Science Books, 270 pp.

  • The WGASF Group, 2000: Intercomparison and validation of ocean-atmosphere energy flux fields: Report of the Joint WCRP/SCOR WG on Air-Sea Fluxes, P. K. Taylor, Ed., WMO, 305 pp. [Available online at http://www.soc.soton.ac.uk/JRD/MET/WGASF.].

  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Weare, B. C., 1989: Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus, 41A , 357370.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and P. T. Strub, 1981: The significance of sampling biases on calculated monthly mean oceanic surface heat fluxes. Tellus, 33 , 211224.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., H. F. Diaz, J. D. Elms, and S. J. Worley, 1998: COADS release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517526.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004a: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17 , 373393.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004b: Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J. Climate, 17 , 20962118.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11 , 26282644.

    • Search Google Scholar
    • Export Citation
  • Zhang, H-M., J. J. Bates, and R. W. Reynolds, 2006: Advances in higher resolution Global Ocean Observing System: Sea surface wind speed perspective. Preprints, 14th Conf. on Interaction of the Sea and Atmosphere, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 6.5.

  • Zolina, O., and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J. Climate, 16 , 30233041.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 106 7
PDF Downloads 74 36 5

Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part I: Uncertainties in Climate Means

View More View Less
  • 1 P. P. Shirshov Institute of Oceanology, Moscow, Russia, and IFM-GEOMAR, Kiel, Germany
  • | 2 ECMWF, Reading, United Kingdom
  • | 3 IFM-GEOMAR, Kiel, Germany
Restricted access

Abstract

Sampling uncertainties in the voluntary observing ship (VOS)-based global ocean–atmosphere flux fields were estimated using the NCEP–NCAR reanalysis and ECMWF 40-yr Re-Analysis (ERA-40) as well as seasonal forecasts without data assimilation. Air–sea fluxes were computed from 6-hourly reanalyzed individual variables using state-of-the-art bulk formulas. Individual variables and computed fluxes were subsampled to simulate VOS-like sampling density. Random simulation of the number of VOS observations and simulation of the number of observations with contemporaneous sampling allowed for estimation of random and total sampling uncertainties respectively. Although reanalyses are dependent on VOS, constituting an important part of data assimilation input, it is assumed that the reanalysis fields adequately reproduce synoptic variability at the sea surface. Sampling errors were quantified by comparison of the regularly sampled (i.e., 6 hourly) and subsampled monthly fields of surface variables and fluxes. In poorly sampled regions random sampling errors amount to 2.5°–3°C for air temperature, 3 m s−1 for the wind speed, 2–2.5 g kg−1 for specific humidity, and 15%–20% of the total cloud cover. The highest random sampling errors in surface fluxes were found for the sensible and latent heat flux and range from 30 to 80 W m−2. Total sampling errors in poorly sampled areas may be higher than random ones by 60%. In poorly sampled subpolar latitudes of the Northern Hemisphere and throughout much of the Southern Ocean the total sampling uncertainty in the net heat flux can amount to 80–100 W m−2. The highest values of the uncertainties associated with the interpolation/extrapolation into unsampled grid boxes are found in subpolar latitudes of both hemispheres for the turbulent fluxes, where they can be comparable with the sampling errors. Simple dependencies of the sampling errors on the number of samples and the magnitude of synoptic variability were derived. Sampling errors estimated from different reanalyses and from seasonal forecasts yield qualitatively comparable spatial patterns, in which the actual values of uncertainties are controlled by the magnitudes of synoptic variability. Finally, estimates of sampling uncertainties are compared with the other errors in air–sea fluxes and the reliability of the estimates obtained is discussed.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117851 Moscow, Russia. Email: gul@sail.msk.ru

Abstract

Sampling uncertainties in the voluntary observing ship (VOS)-based global ocean–atmosphere flux fields were estimated using the NCEP–NCAR reanalysis and ECMWF 40-yr Re-Analysis (ERA-40) as well as seasonal forecasts without data assimilation. Air–sea fluxes were computed from 6-hourly reanalyzed individual variables using state-of-the-art bulk formulas. Individual variables and computed fluxes were subsampled to simulate VOS-like sampling density. Random simulation of the number of VOS observations and simulation of the number of observations with contemporaneous sampling allowed for estimation of random and total sampling uncertainties respectively. Although reanalyses are dependent on VOS, constituting an important part of data assimilation input, it is assumed that the reanalysis fields adequately reproduce synoptic variability at the sea surface. Sampling errors were quantified by comparison of the regularly sampled (i.e., 6 hourly) and subsampled monthly fields of surface variables and fluxes. In poorly sampled regions random sampling errors amount to 2.5°–3°C for air temperature, 3 m s−1 for the wind speed, 2–2.5 g kg−1 for specific humidity, and 15%–20% of the total cloud cover. The highest random sampling errors in surface fluxes were found for the sensible and latent heat flux and range from 30 to 80 W m−2. Total sampling errors in poorly sampled areas may be higher than random ones by 60%. In poorly sampled subpolar latitudes of the Northern Hemisphere and throughout much of the Southern Ocean the total sampling uncertainty in the net heat flux can amount to 80–100 W m−2. The highest values of the uncertainties associated with the interpolation/extrapolation into unsampled grid boxes are found in subpolar latitudes of both hemispheres for the turbulent fluxes, where they can be comparable with the sampling errors. Simple dependencies of the sampling errors on the number of samples and the magnitude of synoptic variability were derived. Sampling errors estimated from different reanalyses and from seasonal forecasts yield qualitatively comparable spatial patterns, in which the actual values of uncertainties are controlled by the magnitudes of synoptic variability. Finally, estimates of sampling uncertainties are compared with the other errors in air–sea fluxes and the reliability of the estimates obtained is discussed.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117851 Moscow, Russia. Email: gul@sail.msk.ru

Save