• Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and streamflow. J. Climate, 14 , 21052128.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. F., and E. J. Barron, 2000: Intra-annual and interannual ensemble forcing of a regional climate model. J. Geophys. Res., 105 , 2952329538.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and J. Shukla, 2000: Seasonal prediction over North America with a regional model nested in a global model. J. Climate, 13 , 26052627.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121 , 28142832.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., L. O. Mearns, C. Shields, and L. Mayer, 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9 , 11501162.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Gutowski, W. J., F. O. Otieno, A. W. Raymond, E. S. Takle, and Z. Pan, 2004: Diagnosis and attribution of a seasonal precipitation deficit in a U.S. regional climate simulation. J. Hydrometeor., 5 , 230242.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and A. Leetmaa, 1999: An evaluation of the NCEP RSM for regional climate modeling. J. Climate, 12 , 592609.

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization in mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Leung, K. R., Y. Qian, and X. Bian, 2003a: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Climate, 16 , 18921911.

    • Search Google Scholar
    • Export Citation
  • Leung, K. R., Y. Qian, X. Bian, and A. Hunt, 2003b: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part II: Mesoscale ENSO anomalies. J. Climate, 16 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., K. E. Kunkel, and A. N. Samel, 2001: Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment. J. Climate, 14 , 43634378.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., L. Li, A. Dai, and K. E. Kunkel, 2004a: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31 .L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004b: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17 , 35103528.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., J. H. Christensen, R. W. Arritt, W. J. Gutowski Jr., E. S. Takle, and F. Otieno, 2001: Evaluation of uncertainties in regional climate change simulations. J. Geophys. Res., 106 , 1773517751.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roads, J., S-C. Chen, and M. Kanamitsu, 2003: U.S. regional climate simulations and seasonal forecasts. J. Geophys. Res., 108 .8606, doi:10.1029/2002JD002232.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. J. Zeng, K. E. Mitchell, Z. Janjic, and E. Rogers, 2001: The impact of land surface processes on simulations of the U.S. hydrological cycle: A case study of the 1993 flood using the SSiB land surface model in the NCEP Eta regional model. Mon. Wea. Rev., 129 , 28332860.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X-Z. Liang, 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982–2002. J. Geophys. Res., 110 .D24110, doi:10.1029/2005JD006472.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 40 4
PDF Downloads 35 18 0

Regional Climate Model Simulations of U.S. Precipitation and Surface Air Temperature during 1982–2002: Interannual Variation

View More View Less
  • 1 Illinois State Water Survey, Department of Natural Resources, and University of Illinois at Urbana–Champaign, Champaign, Illinois
Restricted access

Abstract

The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)-based regional climate model (CMM5) capability in simulating the interannual variations of U.S. precipitation and surface air temperature during 1982–2002 is evaluated with a continuous baseline integration driven by the NCEP–Department of Energy (DOE) Second Atmospheric Model Intercomparison Project Reanalysis (R-2). It is demonstrated that the CMM5 has a pronounced downscaling skill for precipitation and temperature interannual variations. The EOF and correlation analyses illustrate that, for both quantities, the CMM5 captures the spatial pattern, temporal evolution, and circulation teleconnections much better than the R-2. In particular, the CMM5 more realistically simulates the precipitation pattern centered in the Northwest, where the representation of the orographic enhancement by the forced uplifting during winter (rainy season) is greatly improved over the R-2.

The downscaling skill, however, is sensitive to the cumulus parameterization. This sensitivity is studied by comparing the baseline with a branch summer integration replacing the Grell with the Kain–Fritsch cumulus scheme in the CMM5. The dominant EOF mode of the U.S. summer precipitation interannual variation, identified with the out-of-phase relationship between the Midwest and Southeast in observations, is reproduced more accurately by the Grell than the Kain–Fritsch scheme, which largely underestimates the variation in the Midwest. This pattern is associated with east–west movement of the Great Plains low-level jet (LLJ): a more western position corresponds to a stronger southerly flow bringing more moisture and heavier rainfall in the Midwest and less in the Southeast. The second EOF pattern, which describes the consistent variation over the southern part of the Midwest and the South in observations, is captured better by the Kain–Fritsch scheme than the Grell, whose pattern systematically shifts southward.

Corresponding author address: Dr. Jinhong Zhu, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820-7495. Email: zjh@uiuc.edu

Abstract

The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)-based regional climate model (CMM5) capability in simulating the interannual variations of U.S. precipitation and surface air temperature during 1982–2002 is evaluated with a continuous baseline integration driven by the NCEP–Department of Energy (DOE) Second Atmospheric Model Intercomparison Project Reanalysis (R-2). It is demonstrated that the CMM5 has a pronounced downscaling skill for precipitation and temperature interannual variations. The EOF and correlation analyses illustrate that, for both quantities, the CMM5 captures the spatial pattern, temporal evolution, and circulation teleconnections much better than the R-2. In particular, the CMM5 more realistically simulates the precipitation pattern centered in the Northwest, where the representation of the orographic enhancement by the forced uplifting during winter (rainy season) is greatly improved over the R-2.

The downscaling skill, however, is sensitive to the cumulus parameterization. This sensitivity is studied by comparing the baseline with a branch summer integration replacing the Grell with the Kain–Fritsch cumulus scheme in the CMM5. The dominant EOF mode of the U.S. summer precipitation interannual variation, identified with the out-of-phase relationship between the Midwest and Southeast in observations, is reproduced more accurately by the Grell than the Kain–Fritsch scheme, which largely underestimates the variation in the Midwest. This pattern is associated with east–west movement of the Great Plains low-level jet (LLJ): a more western position corresponds to a stronger southerly flow bringing more moisture and heavier rainfall in the Midwest and less in the Southeast. The second EOF pattern, which describes the consistent variation over the southern part of the Midwest and the South in observations, is captured better by the Kain–Fritsch scheme than the Grell, whose pattern systematically shifts southward.

Corresponding author address: Dr. Jinhong Zhu, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820-7495. Email: zjh@uiuc.edu

Save