• Andrews, J. T., , and W. R. Peltier, 1989: Quaternary geodynamics in Canada. Quaternary Geology of Canada and Greenland, R. J. Fulton, Ed., Vol. K-1, Geology of North America, Canadian Government Publishing Centre, 541–572.

    • Search Google Scholar
    • Export Citation
  • Barber, D. C., and Coauthors, 1999: Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400 , 344348.

    • Search Google Scholar
    • Export Citation
  • Bard, E., , B. Hamelin, , A. Maurice, , L. F. Montaggioni, , G. Cabioch, , G. Faure, , and F. Rougerie, 1996: Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382 , 241244.

    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and Coauthors, 1998: Paleoclimate simulations for North America over the past 21,000 years: Features of the simulated climate and comparisons with paleoenvironmental data. Quat. Sci. Rev., 17 , 549585.

    • Search Google Scholar
    • Export Citation
  • Bennike, O., , and S. Björck, 2002: Chronology of the last recession of the Greenland Ice Sheet. J. Quat. Sci., 17 , 211219.

  • Berger, A., , and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10 , 297317.

  • Bevington, P., , and D. K. Robinson, 2002: Data Reduction and Error Analysis for the Physical Sciences. 3d ed. McGraw-Hill, 336 pp.

  • Blanchon, P., , and J. Shaw, 1995: Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology, 23 , 48.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., , R. B. Alley, , and D. Pollard, 1999: Northern Hemisphere ice-sheet influences on global climate change. Science, 286 , 11041111.

    • Search Google Scholar
    • Export Citation
  • Conway, H., , B. L. Hall, , G. H. Denton, , A. M. Gades, , and E. D. Waddington, 1999: Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286 , 280283.

    • Search Google Scholar
    • Export Citation
  • Cottet-Puinel, M., , A. J. Weaver, , C. Hillaire-Marcel, , A. de Vernal, , P. U. Clark, , and M. Eby, 2004: Variation of Labrador Sea Water formation over the Last Glacial cycle in a climate model of intermediate complexity. Quat. Sci. Rev., 23 , 449465.

    • Search Google Scholar
    • Export Citation
  • Dyke, A. S., 2004: An outline of North American Deglaciation with emphasis on central and northern Canada. Quaternary Glaciations-Extent and Chronology, Part II: North America, Vol. 2b. J. Ehlers and P. L. Gibbard, Eds., Elsevier Science and Technology Books, 373–424.

    • Search Google Scholar
    • Export Citation
  • Hardy, L., 1976: Contribution a l’etude geomorphologique de la portion Quebecoise de al Baie de James. Ph.D. thesis, McGill University, 264 pp.

  • Hillaire-Marcel, C., , A. de Vernal, , G. Bilodeau, , and A. J. Weaver, 2001: Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature, 410 , 10731077.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. R., , and A. P. Wolfe, 2006: Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quat. Res., 65 , 223231.

    • Search Google Scholar
    • Export Citation
  • Kaufman, D. S., and Coauthors, 2004: Holocene thermal maximum in the western Arctic (0-180°W). Quat. Sci. Rev., 23 , 529560.

  • Kutzbach, J., , R. Gallimore, , S. Harrison, , P. Behling, , R. Selin, , and F. Laarif, 1998: Climate and biome simulations for the past 21,000 years. Quat. Sci. Rev., 17 , 473506.

    • Search Google Scholar
    • Export Citation
  • Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett., 104 , 424439.

    • Search Google Scholar
    • Export Citation
  • Licciardi, J. M., 2000: Alpine glacier and pluvial lake records of late Pleistocene climate variability in the western United States. Ph.D. thesis, Oregon State University, 150 pp.

  • Licciardi, J. M., , P. U. Clark, , J. W. Jenson, , and D. R. MacAyeal, 1998: Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat. Sci. Rev., 17 , 427448.

    • Search Google Scholar
    • Export Citation
  • Lighty, R. G., , I. G. Macintyre, , and R. Stuckenrath, 1982: Acropora palmata reef framework: A reliable indicator of sea level in the Western Atlantic for the past 10,000 years. Coral Reefs, 1 , 125130.

    • Search Google Scholar
    • Export Citation
  • Middleton, R., , L. Brown, , B. Dezfouly Arjomandy, , and F. Klein, 1993: On 10Be standards and half-life of 10Be. Nucl. Instrum. Methods Phys. Res., 82 , 399403.

    • Search Google Scholar
    • Export Citation
  • Miller, G. H., , A. P. Wolfe, , J. P. Briner, , P. E. Sauer, , and A. Nesje, 2005: Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quat. Sci. Rev., 24 , 17031721.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., , N. S. Grahame, , and K. J. Needham, 1988: Climate simulations for 9000 years before present: Seasonal variations and effect of the Laurentide Ice Sheet. J. Geophys. Res., 93 , 82838303.

    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., , A. M. Forte, , and M. Simons, 2000: A reappraisal of postglacial decay times from Richmond Gulf and James Bay, Canada. Geophys. J. Int., 142 , 783800.

    • Search Google Scholar
    • Export Citation
  • Montaggioni, L., , G. Cabioch, , G. Camoin, , E. Bard, , A. Ribaud-Laurenti, , G. Faure, , P. Déjardin, , and J. Récy, 1997: Continuous record of reef growth over the past 14 ky on the mid-Pacific island of Tahiti. Geology, 25 , 555558.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., , J. C. Bergengren, , L. M. Stillwell-Soller, , B. Felzer, , and S. L. Thompson, 1998: Climate simulations for 10,000 and 6,000 years BP. Paleoclimates, 2 , 183218.

    • Search Google Scholar
    • Export Citation
  • Raisbeck, G. M., , F. Yiou, , D. Bourlès, , E. T. Brown, , D. Deboffle, , P. Jouhanneau, , J. Lestringuez, , and Z. Q. Zhou, 1994: The AMS facility at Gif-sur-Yvette: Progress, perturbations and projects. Nucl. Instrum. Methods Phys. Res., 92 , 4346.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., , H. Goosse, , T. Fichefet, , V. Brovkin, , E. Driesschaert, , and F. Wolk, 2005: Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Climate Dyn., 24 , 2343.

    • Search Google Scholar
    • Export Citation
  • Rinterknecht, V. R., 2003: Cosmogenic 10Be Chronology for the Last Deglaciation of the Southern Scandinavian Ice Sheet. Ph.D. thesis, Oregon State University, 99 pp.

  • Rinterknecht, V. R., , P. U. Clark, , G. M. Raisbeck, , F. Yiou, , E. J. Brook, , S. Tschudi, , and J. P. Lunkka, 2004: Cosmogenic 10Be dating of the Salpausselkä I Moraine in southwestern Finland. Quat. Sci. Rev., 23 , 22832289.

    • Search Google Scholar
    • Export Citation
  • Short, S. K., , and H. Nichols, 1977: Holocene pollen diagrams from subarctic Labrador-Ungava: Vegetational history and climate change. Arct. Alp. Res., 9 , 265290.

    • Search Google Scholar
    • Export Citation
  • Solignac, S., , A. de Vernal, , and C. Hillaire-Marcel, 2004: Holocene sea-surface conditions in the North Atlantic—Contrasted trends and regimes in the western and eastern sectors (Labrador Sea vs. Iceland Basin). Quat. Sci. Rev., 23 , 319334.

    • Search Google Scholar
    • Export Citation
  • Stone, J. O., 2000: Air pressure and cosmogenic isotope production. J. Geophys. Res., 105 , 2375323759.

  • Stone, J. O., , G. A. Balco, , D. E. Sugden, , M. W. Caffee, , L. C. Sass III, , S. G. Cowdery, , and C. Siddoway, 2003: Holocene deglaciation of Marie Byrd Land, West Antarctica. Science, 299 , 99102.

    • Search Google Scholar
    • Export Citation
  • Veillette, J. J., , A. S. Dyke, , and M. Roy, 1999: Ice-flow evolution of the Labrador Sector of the Laurentide Ice Sheet: A review, with new evidence from northern Quebec. Quat. Sci. Rev., 18 , 9931019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 10
PDF Downloads 46 46 4

Rapid Holocene Deglaciation of the Labrador Sector of the Laurentide Ice Sheet

View More View Less
  • 1 Department of Geosciences, Oregon State University, Corvallis, Oregon
  • | 2 Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3/CNRS, Orsay, France
  • | 3 Department of Geosciences, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

Retreat of the Laurentide Ice Sheet (LIS) following the Last Glacial Maximum 21 000 yr BP affected regional to global climate and accounted for the largest proportion of sea level rise. Although the late Pleistocene LIS retreat chronology is relatively well constrained, its Holocene chronology remains poorly dated, limiting our understanding of its role in Holocene climate change and sea level rise. Here new 10Be cosmogenic exposure ages on glacially deposited boulders are used to date the final disappearance of the Labrador sector of the LIS (LS-LIS). These data suggest that following the deglaciation of the southeastern Hudson Bay coastline at 8.0 ± 0.2 cal ka BP, the southwestern margin of the LS-LIS rapidly retreated ∼600 km in 140 yr and most likely in ∼600 yr at a rate of ∼900 m yr−1, with final deglaciation by 6.8 ± 0.2 10Be ka. The disappearance of the LS-LIS ∼6.8 10Be ka and attendant reduction in freshwater runoff may have induced the formation of Labrador Deep Seawater, while the loss of the high albedo surface may have initiated the Holocene Thermal Maximum in eastern Canada and southern Greenland. Moreover, the rapid melting just prior to ∼6.8 10Be ka indicates that the remnant LIS may be the primary source of a postulated rapid rise in global sea level of ∼5 m that occurred sometime between 7.6 and 6.5 cal ka BP.

* Current affiliation: Department of Geology and Geophysics, University of Wisconsin—Madison, Madison, Wisconsin

Corresponding author address: Anders E. Carlson, Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 W. Dayton St., Madison, WI 53706. Email: acarlson@geology.wisc.edu

Abstract

Retreat of the Laurentide Ice Sheet (LIS) following the Last Glacial Maximum 21 000 yr BP affected regional to global climate and accounted for the largest proportion of sea level rise. Although the late Pleistocene LIS retreat chronology is relatively well constrained, its Holocene chronology remains poorly dated, limiting our understanding of its role in Holocene climate change and sea level rise. Here new 10Be cosmogenic exposure ages on glacially deposited boulders are used to date the final disappearance of the Labrador sector of the LIS (LS-LIS). These data suggest that following the deglaciation of the southeastern Hudson Bay coastline at 8.0 ± 0.2 cal ka BP, the southwestern margin of the LS-LIS rapidly retreated ∼600 km in 140 yr and most likely in ∼600 yr at a rate of ∼900 m yr−1, with final deglaciation by 6.8 ± 0.2 10Be ka. The disappearance of the LS-LIS ∼6.8 10Be ka and attendant reduction in freshwater runoff may have induced the formation of Labrador Deep Seawater, while the loss of the high albedo surface may have initiated the Holocene Thermal Maximum in eastern Canada and southern Greenland. Moreover, the rapid melting just prior to ∼6.8 10Be ka indicates that the remnant LIS may be the primary source of a postulated rapid rise in global sea level of ∼5 m that occurred sometime between 7.6 and 6.5 cal ka BP.

* Current affiliation: Department of Geology and Geophysics, University of Wisconsin—Madison, Madison, Wisconsin

Corresponding author address: Anders E. Carlson, Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 W. Dayton St., Madison, WI 53706. Email: acarlson@geology.wisc.edu

Save