• Ambaum, M. H., , B. J. Hoskins, , and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Codron, F., 2005: Relation between annular modes and the mean state: Southern Hemisphere summer. J. Climate, 18 , 320330.

  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.”. Geophys. Res. Lett., 27 , 779782.

  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Gong, D., , and S. Wang, 1999: Definition of antarctic oscillation index. Geophys. Res. Lett., 26 , 459462.

  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32 , 14941497.

  • Held, I. M., , and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18 , 172191.

  • Lee, S., , and H-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Limpasuvan, V., , and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26 , 31333136.

  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • McWilliams, J. C., , and J. H. S. Chow, 1981: Equilibrium geostrophic turbulence I: Reference solution in a β-plane channel. J. Phys. Oceanogr., 11 , 921949.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291642.

  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982a: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , F. J. Moeng, , T. L. Bell, , and R. F. Cahalan, 1982b: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110 , 319326.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech., 69 , 417443.

  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57 , 415422.

  • Saravanan, R., 1992: A mechanistic spectral primitive equation model using pressure coordinates. Model Documentation, Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, 36 pp.

  • Sassi, F., , R. R. Garcia, , B. A. Boville, , and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107 .4380, doi:10.1029/2001JD001525.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , and C-K. Park, 1991: Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48 , 629650.

  • Scinocca, J., , and P. Haynes, 1998: Dynamical forcing of stratospheric planetary waves by tropospheric baroclinic eddies. J. Atmos. Sci., 55 , 23612392.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 1987: The middle atmosphere in the absence of dynamic heat fluxes. Quart. J. Roy. Meteor. Soc., 113 , 603633.

  • Son, S-W., , and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62 , 37413757.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , S. Lee, , and M. P. Baldwin, 2002: Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. The North Atlantic Oscillation, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 81–112.

  • Wallace, J. M., 2000: North Atlantic Oscillation/Annular Mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 25
PDF Downloads 82 82 24

Zonal Jet Structure and the Leading Mode of Variability

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

An observational analysis of the Northern Hemisphere circulation during winter reveals that the leading mode of variability depends on longitude. In particular, the first EOF of the zonal-mean circulation differs over the Atlantic and Pacific sectors. These results provide motivation for a series of model runs where a simple GCM is used to investigate the effects of the zonal jet structure on the leading mode of variability in the Northern Hemisphere. Model results indicate that the leading mode of variability depends on the distance between the eddy-driven and subtropical jets. When the jets are well separated, the leading mode of variability describes latitudinal shifting of the eddy-driven jet. However, when the two jets are nearly collocated, pulsing of the combined jet dominates the variability. This change coincides with a weakening of the positive feedback between the eddies and zonal flow anomalies. These results provide a possible explanation for the reduced amplitude of the Northern Annular Mode in the Pacific sector relative to that in the Atlantic sector during Northern Hemisphere winter.

Corresponding author address: Scott J. Eichelberger, 3TIER, 2001 6th Ave., Suite 2100, Seattle, WA 98121. Email: seich@3tiergroup.com

Abstract

An observational analysis of the Northern Hemisphere circulation during winter reveals that the leading mode of variability depends on longitude. In particular, the first EOF of the zonal-mean circulation differs over the Atlantic and Pacific sectors. These results provide motivation for a series of model runs where a simple GCM is used to investigate the effects of the zonal jet structure on the leading mode of variability in the Northern Hemisphere. Model results indicate that the leading mode of variability depends on the distance between the eddy-driven and subtropical jets. When the jets are well separated, the leading mode of variability describes latitudinal shifting of the eddy-driven jet. However, when the two jets are nearly collocated, pulsing of the combined jet dominates the variability. This change coincides with a weakening of the positive feedback between the eddies and zonal flow anomalies. These results provide a possible explanation for the reduced amplitude of the Northern Annular Mode in the Pacific sector relative to that in the Atlantic sector during Northern Hemisphere winter.

Corresponding author address: Scott J. Eichelberger, 3TIER, 2001 6th Ave., Suite 2100, Seattle, WA 98121. Email: seich@3tiergroup.com

Save