• Arbic, B. K., , and W. B. Owens, 2001: Climatic warming of Atlantic intermediate waters. J. Climate, 14 , 40914108.

  • Banks, H., , and R. Wood, 2002: Where to look for anthropogenic climate change in the ocean. J. Climate, 15 , 879891.

  • Banks, H., , and N. L. Bindoff, 2003: Comparison of observed temperature and salinity changes in the Indo–Pacific with results from the coupled climate model HadCM3: Processes and mechanisms. J. Climate, 16 , 156166.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , and J. A. Church, 1992: Warming of the water column in the south–west Pacific Ocean. Nature, 357 , 5962.

  • Bindoff, N. L., , and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , and T. J. McDougall, 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , E. L. McDonagh, , and B. A. King, 2003: Changes in ocean water mass properties: Oscillations or trends? Science, 300 , 20862088.

    • Search Google Scholar
    • Export Citation
  • Dunn, J. R., , and K. R. Ridgway, 2002: Mapping ocean properties in regions of complex topography. Deep-Sea Res. I, 49 , 591604.

  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical southern hemisphere winds and currents. Geophys. Res. Lett., 33 .L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295 , 12751277.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gnanadesikan, A., , B. L. Samuels, , and R. D. Slater, 2003: Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett., 30 .1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Goodman, P. J., 2001: Thermohaline adjustment and advection in an OGCM. J. Phys. Oceanogr., 31 , 14771497.

  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Gordon, A. L., 2001: Interocean exchange. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 303–314.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , R. Pacanowski, , and R. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and A. H. Orsi, 1997: Southwest Pacific Ocean water-mass changes between 1968/69 and 1990/91. J. Climate, 10 , 306316.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I. V., 2005: Role of daily surface forcing in setting the temperature and mixed layer structure of the Southern Ocean. J. Geophys. Res., 110 .C07006, doi:10.1029/2004JC002610.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I. V., , and E. S. Sarachik, 2004: Mechanisms controlling the sensitivity of the Atlantic thermohaline circulation to the parameterization of eddy transports in ocean GCMs. J. Phys. Oceanogr., 34 , 16281647.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I. V., , A. Sokolov, , and P. H. Stone, 2002: An efficient climate model with a 3D ocean and statistical-dynamical atmosphere. Climate Dyn., 19 , 585598.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., 2002: On the freshwater forcing of the thermohaline circulation in the limit of low diapycnal mixing. J. Geophys. Res., 107 .3077, doi:10.1029/2000JC000685.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. 2. The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40 , 427464.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and Y. Chao, 2000: On the eddy isopycnal thickness diffusivity of the Gent–McWilliams subgrid mixing parameterization. J. Climate, 13 , 502510.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., , and M. H. England, 2004: Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Climate, 17 , 10401054.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth III, , and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Pardaens, A. K., , H. T. Banks, , J. M. Gregory, , and P. R. Rowntree, 2003: Freshwater transports in HadCM3. Climate Dyn., 21 , 177195.

  • Piola, A. R., , and D. T. Georgi, 1982: Circumpolar properties of Antarctic intermediate water and subantarctic mode water. Deep-Sea Res., 29 , 687711.

    • Search Google Scholar
    • Export Citation
  • Piola, A. R., , and A. L. Gordon, 1989: Intermediate water in the southwestern South Atlantic. Deep-Sea Res., 36 , 116.

  • Price, J. F., , R. A. Weller, , and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Ribbe, J., 1999: On wind-driven mid-latitude convection in ocean general circulation models. Tellus, 51A , 517525.

  • Ribbe, J., 2001: Intermediate water mass production controlled by southern hemisphere winds. Geophys. Res. Lett., 28 , 535538.

  • Ridgway, K. R., , and J. R. Dunn, 2003: Mesocale structure of the mean East Australian current system and its relationship with topography. Prog. Oceanogr., 56 , 189222.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , J. R. Dunn, , and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19 , 13571375.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 , 26752692.

  • Rintoul, S. R., , and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of subantarctic mode water. J. Phys. Oceanogr., 32 , 13081321.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., , and D. Marshall, 2000: On the validity of downgradient eddy closures in ocean models. J. Geophys. Res., 105 , 2861328627.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and P. Sutton, 1998: The mean and variability of ocean circulation past northern New Zealand: Determining the representativeness of hydrographic climatologies. J. Geophys. Res., 103 , 1304113054.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , J. Gilson, , R. Davis, , P. Sutton, , S. Wijffels, , and S. Riser, 2007: Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr., 37 , 162173.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., , R. J. Stouffer, , and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19 , 45604575.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , A. J. Weaver, , and J. M. Gregory, 2003: On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J. Climate, 16 , 27972801.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., , and M. H. England, 2004: Antarctic intermediate water circulation and variability in a coupled climate model. J. Phys. Oceanogr., 34 , 21602179.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., , N. Gruber, , M. A. Brzezinski, , and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427 , 5660.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., , and B. A. King, 1995: Oceanic fluxes on the WOCE A11 section. J. Phys. Oceanogr., 25 , 19421958.

  • Schmitz Jr, W. J., 1996: On the world ocean circulation. Volume II: The Pacific and Indian Oceans—A global update. Tech. Rep. WHOI-96-08, 237 pp.

  • Sloyan, B. M., , and S. R. Rintoul, 2001a: Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and S. R. Rintoul, 2001b: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

    • Search Google Scholar
    • Export Citation
  • Suga, T., , and L. D. Talley, 1995: Antarctic intermediate water circulation in the tropical and subtropical South Atlantic. J. Geophys. Res., 100 , 1344113454.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , O. Boebel, , B. Barnier, , and G. Madec, 2003: Agulhas eddy fluxes in a 1/6° Atlantic model. Deep-Sea Res. II, 50 , 251280.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , P. H. Stone, , and J. Marotzke, 1999: Global thermohaline circulation. Part I: Sensitivity to atmospheric moisture transport. J. Climate, 12 , 7182.

    • Search Google Scholar
    • Export Citation
  • Wilson, S. G., 2000: How ocean vertical mixing and accumulation of warm surface water influence the “sharpness” of the equatorial thermocline. J. Climate, 13 , 36383656.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., , N. L. Bindoff, , and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400 , 440443.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , C. A. Shields, , W. G. Large, , and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19 , 25452566.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 7
PDF Downloads 29 29 2

Simulation of Subantarctic Mode and Antarctic Intermediate Waters in Climate Models

View More View Less
  • 1 Wealth from Oceans Flagship, and CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia
  • | 2 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The Southern Ocean’s Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) are two globally significant upper-ocean water masses that circulate in all Southern Hemisphere subtropical gyres and cross the equator to enter the North Pacific and North Atlantic Oceans. Simulations of SAMW and AAIW for the twentieth century in eight climate models [GFDL-CM2.1, CCSM3, CNRM-CM3, MIROC3.2(medres), MIROC3.2(hires), MRI-CGCM2.3.2, CSIRO-Mk3.0, and UKMO-HadCM3] that provided their output in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) have been compared to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Regional Seas. The climate models, except for UKMO-HadCM3, CSIRO-Mk3.0, and MRI-CGCM2.3.2, provide a reasonable simulation of SAMW and AAIW isopycnal temperature and salinity in the Southern Ocean. Many models simulate the potential vorticity minimum layer and salinity minimum layer of SAMW and AAIW, respectively. However, the simulated SAMW layer is generally thinner and at lighter densities than observed. All climate models display a limited equatorward extension of SAMW and AAIW north of the Antarctic Circumpolar Current. Errors in the simulation of SAMW and AAIW property characteristics are likely to be due to a combination of many errors in the climate models, including simulation of wind and buoyancy forcing, inadequate representation of subgrid-scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing parameterizations.

Corresponding author address: Bernadette Sloyan, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia. Email: bernadette.sloyan@csiro.au

Abstract

The Southern Ocean’s Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) are two globally significant upper-ocean water masses that circulate in all Southern Hemisphere subtropical gyres and cross the equator to enter the North Pacific and North Atlantic Oceans. Simulations of SAMW and AAIW for the twentieth century in eight climate models [GFDL-CM2.1, CCSM3, CNRM-CM3, MIROC3.2(medres), MIROC3.2(hires), MRI-CGCM2.3.2, CSIRO-Mk3.0, and UKMO-HadCM3] that provided their output in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) have been compared to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Regional Seas. The climate models, except for UKMO-HadCM3, CSIRO-Mk3.0, and MRI-CGCM2.3.2, provide a reasonable simulation of SAMW and AAIW isopycnal temperature and salinity in the Southern Ocean. Many models simulate the potential vorticity minimum layer and salinity minimum layer of SAMW and AAIW, respectively. However, the simulated SAMW layer is generally thinner and at lighter densities than observed. All climate models display a limited equatorward extension of SAMW and AAIW north of the Antarctic Circumpolar Current. Errors in the simulation of SAMW and AAIW property characteristics are likely to be due to a combination of many errors in the climate models, including simulation of wind and buoyancy forcing, inadequate representation of subgrid-scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing parameterizations.

Corresponding author address: Bernadette Sloyan, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia. Email: bernadette.sloyan@csiro.au

Save