Response of the Middle Atmosphere to CO2 Doubling: Results from the Canadian Middle Atmosphere Model

V. I. Fomichev Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by V. I. Fomichev in
Current site
Google Scholar
PubMed
Close
,
A. I. Jonsson Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by A. I. Jonsson in
Current site
Google Scholar
PubMed
Close
,
J. de Grandpré Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada

Search for other papers by J. de Grandpré in
Current site
Google Scholar
PubMed
Close
,
S. R. Beagley Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by S. R. Beagley in
Current site
Google Scholar
PubMed
Close
,
C. McLandress Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by C. McLandress in
Current site
Google Scholar
PubMed
Close
,
K. Semeniuk Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by K. Semeniuk in
Current site
Google Scholar
PubMed
Close
, and
T. G. Shepherd Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by T. G. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are found to be approximately additive, with the former effect dominating throughout the middle atmosphere. The paper discusses the overall response, with emphasis on the effects of SST changes, which allow a tropospheric response to the CO2 forcing. The overall response is a cooling of the middle atmosphere accompanied by significant increases in the ozone and water vapor abundances. The ozone radiative feedback occurs through both an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15% of the total effect. Changes in global mean water vapor cooling are negligible above ∼30 hPa. Near the polar summer mesopause, the temperature response is weak and not statistically significant. The main effects of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating and cooling at low and middlelatitudes in the middle atmosphere, warming in the summer mesosphere, water vapor increase throughout the domain, and O3 decrease in the lower tropical stratosphere. No noticeable change in upward-propagating planetary wave activity in the extratropical winter–spring stratosphere and no significant temperature response in the polar winter–spring stratosphere have been detected. Increased upwelling in the tropical stratosphere has been found to be linked to changed wave driving at low latitudes.

Corresponding author address: V. I. Fomichev, Department of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: victor@nimbus.yorku.ca

Abstract

The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are found to be approximately additive, with the former effect dominating throughout the middle atmosphere. The paper discusses the overall response, with emphasis on the effects of SST changes, which allow a tropospheric response to the CO2 forcing. The overall response is a cooling of the middle atmosphere accompanied by significant increases in the ozone and water vapor abundances. The ozone radiative feedback occurs through both an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15% of the total effect. Changes in global mean water vapor cooling are negligible above ∼30 hPa. Near the polar summer mesopause, the temperature response is weak and not statistically significant. The main effects of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating and cooling at low and middlelatitudes in the middle atmosphere, warming in the summer mesosphere, water vapor increase throughout the domain, and O3 decrease in the lower tropical stratosphere. No noticeable change in upward-propagating planetary wave activity in the extratropical winter–spring stratosphere and no significant temperature response in the polar winter–spring stratosphere have been detected. Increased upwelling in the tropical stratosphere has been found to be linked to changed wave driving at low latitudes.

Corresponding author address: V. I. Fomichev, Department of Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada. Email: victor@nimbus.yorku.ca

Save
  • Akmaev, R. A., and V. I. Fomichev, 1998: Cooling of the mesosphere and lower thermosphere due to doubling of CO2. Ann. Geophys., 16 , 15011512.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

    • Search Google Scholar
    • Export Citation
  • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Beig, G., and Coauthors, 2003: Review of mesospheric temperature trends. Rev. Geophys., 41 .1015, doi:10.1029/2002RG000121.

  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn., 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410 , 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., J. Austin, J. R. Knight, A. A. Scaife, and M. L. Gallani, 2000: The response of the stratospheric climate to projected changes in the concentrations of the well-mixed greenhouse gases from 1992 to 2051. J. Climate, 13 , 21422159.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulation of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27 , 727741.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., J. W. Sandilands, J. C. McConnell, S. R. Beagley, P. C. Croteau, and M. Y. Danilin, 1997: Canadian middle atmosphere model: Preliminary results from the chemical transport module. Atmos.–Ocean, 35 , 385431.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian middle atmosphere model. J. Geophys. Res., 105 , 2647526491.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, race species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 .D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., J-P. Blanchet, and D. S. Turner, 1998: Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J. Geophys. Res., 103 , 1150511528.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian middle atmosphere model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107 .4087, doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., C. Fu, J. de Grandpré, S. R. Beagley, V. P. Ogibalov, and J. C. McConnell, 2004: Model thermal response to minor radiative energy sources and sinks in the middle atmosphere. J. Geophys. Res., 109 .D19107, doi:10.1029/2004JD004892.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. D. Forster, M. Fujiwara, Q. Fu, H. Vomel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109 .D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Grooß, J-U., and J. M. Russell III, 2005: Technical note: A stratospheric climatology for O3, H2O, CH4, NOx, HCl and HF derived from HALOE measurements. Atmos. Chem. Phys., 5 , 27972807.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651679.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. J. Atmos. Sci., 60 , 27652782.

    • Search Google Scholar
    • Export Citation
  • Jonsson, A. I., J. de Grandpré, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109 .D24103, doi:10.1029/2004JD005093.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., B. Steil, C. Brühl, M. A. Giorgetta, and K. Krüger, 2003: A new interactive chemistry-climate model. 2: Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108 .4429, doi:10.1029/2002JD002977.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and J. F. Scinocca, 2005: The GCM response to current parameterizations of nonorographic gravity wave drag. J. Atmos. Sci., 62 , 23942413.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and V. I. Fomichev, 2006: Amplification of the mesospheric diurnal tide in a doubled CO2 atmosphere. Geophys. Res. Lett., 33 .L06808, doi:10.1029/2005GL025345.

    • Search Google Scholar
    • Export Citation
  • Mertens, C. J., and Coauthors, 2004: SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys. Res. Lett., 31 .L03105, doi:10.1029/2003GL018605.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during spring? J. Geophys. Res., 106 , 1999920010.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56 , 868890.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39 , 71122.

  • Randel, W., and Coauthors, 2004: The SPARC intercomparison of middle-atmosphere climatologies. J. Climate, 17 , 9861003.

  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 .2042, doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lerner, J. Perlwitz, C. McLinden, and M. Prather, 2002: Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. J. Geophys. Res., 107 .4800, doi:10.1029/2002JD002483.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Perlwitz, P. Lonergan, and J. Lerner, 2005: AO/NAO response to climate change. 2: Relative importance of low- and high-latitude temperature changes. J. Geophys. Res., 110 .D12108, doi:10.1029/2004JD005686.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. Austin, N. Butchart, S. Pawson, M. Keil, J. Nash, and I. N. James, 2000: Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses. Quart. J. Roy. Meteor. Soc., 126 , 25852604.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2006: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19 , 39033931.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61 , 19932015.

  • Scott, R. K., and P. H. Haynes, 1998: Internal interannual variability of the extratropical stratospheric circulation: The low-latitude flywheel. Quart. J. Roy. Meteor. Soc., 124 , 21492173.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and P. H. Haynes, 2000: Internal vacillations in stratosphere-only models. J. Atmos. Sci., 57 , 32333250.

  • Seidel, D. J., R. J. Ross, and J. K. Angell, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106 , 78577878.

    • Search Google Scholar
    • Export Citation
  • Semeniuk, K., and T. G. Shepherd, 2001: Mechanisms for tropical upwelling in the stratosphere. J. Atmos. Sci., 58 , 30973115.

  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64 , 190203.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61 , 28992908.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17 , 23522367.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310 , 841844.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and S. Yoden, 2002: Internal interannual variability of the troposphere–stratosphere coupled system in a simple global circulation model. Part II: Millennium integrations. J. Atmos. Sci., 59 , 30373050.

    • Search Google Scholar
    • Export Citation
  • WCRP-SPARC, 2002: SPARC intercomparison of middle atmosphere climatologies. Tech. Rep. 3, World Climate Research Program-Stratospheric Processes and their Role in Climate, Geneva, Switzerland, 96 pp.

  • WMO, 2003: Scientific assessment of ozone depletion: 2002. Tech. Rep. 47, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, 498 pp.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., M. Taguchi, and Y. Naito, 2002: Numerical studies on time variations of the troposphere–stratosphere coupled system. J. Meteor. Soc. Japan, 80 , 811830.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 450 204 107
PDF Downloads 182 56 1