Assessing a Satellite-Era Perspective of the Global Water Cycle

C. Adam Schlosser Joint Program on the Policy and Science of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by C. Adam Schlosser in
Current site
Google Scholar
PubMed
Close
and
Paul R. Houser Climate Dynamics Program, Center for Research on Environment and Water, George Mason University, Fairfax, Virginia

Search for other papers by Paul R. Houser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The capability of a global data compilation, largely satellite based, is assessed to depict the global atmospheric water cycle’s mean state and variability. Monthly global precipitation estimates from the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) span from 1979 to 1999. Monthly global Special Sensor Microwave Imager (SSM/I)-based bulk aerodynamic ocean evaporation estimates span from June 1987 to December 1999. Global terrestrial evapotranspiration rates are estimated over a multidecade period (1975–99) using a global land model simulation forced by bias-corrected reanalysis data. Monthly total precipitable water (TPW) from the NASA Global Water Vapor Project (NVAP) spans from 1988 to 1999.

The averaged annual global precipitation (P) and evaporation (E) estimates are out of balance by 5% or 24 000 (metric) gigatons (Gton) of water, which exceeds the uncertainty of global mean annual precipitation (∼±1%). For any given year, the annual flux imbalance can be on the order of 10% (48 000 Gton of water). However, observed global TPW interannual variations suggest a water flux imbalance on the order of 0.01% (48 Gton of water)—a finding consistent with a general circulation model (GCM) simulation. Variations in observationally based global P and E rates show weak monthly and interannual consistency, and depending on the choice of ocean evaporation data, the mean annual cycle of global EP can be up to 5 times larger to that of TPW. The global ocean annual evaporation rates have as much as a ∼1% yr−1 increase during the period analyzed (1988–99), which is consistent in sign with most transient CO2 GCM simulations, but at least an order of magnitude larger. The ocean evaporation trends are driven by trends in SSM/I-retrieved near-surface atmospheric humidity and wind speed, and the largest year-to-year changes are coincident with transitions in the SSM/I fleet.

In light of (potential) global water cycle changes in GCM projections, the ability to consistently detect or verify these changes in nature rests upon one or more of the following: quantification of global evaporation uncertainty, at least a twofold improvement in consistency between the observationally based global precipitation and evaporation variations, a two order of magnitude rectification between annual variations of EP and precipitable water as well as substantial improvements in the consistency of their seasonal cycles, a critical reevaluation of intersatellite calibration for the relevant geophysical quantities used for ocean evaporation estimates, and the continuation of a dedicated calibration in this regard for future satellite transitions.

Corresponding author address: C. Adam Schlosser, MIT, E40-413, 1 Amherst St., Cambridge, MA 02048. Email: casch@mit.edu

Abstract

The capability of a global data compilation, largely satellite based, is assessed to depict the global atmospheric water cycle’s mean state and variability. Monthly global precipitation estimates from the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) span from 1979 to 1999. Monthly global Special Sensor Microwave Imager (SSM/I)-based bulk aerodynamic ocean evaporation estimates span from June 1987 to December 1999. Global terrestrial evapotranspiration rates are estimated over a multidecade period (1975–99) using a global land model simulation forced by bias-corrected reanalysis data. Monthly total precipitable water (TPW) from the NASA Global Water Vapor Project (NVAP) spans from 1988 to 1999.

The averaged annual global precipitation (P) and evaporation (E) estimates are out of balance by 5% or 24 000 (metric) gigatons (Gton) of water, which exceeds the uncertainty of global mean annual precipitation (∼±1%). For any given year, the annual flux imbalance can be on the order of 10% (48 000 Gton of water). However, observed global TPW interannual variations suggest a water flux imbalance on the order of 0.01% (48 Gton of water)—a finding consistent with a general circulation model (GCM) simulation. Variations in observationally based global P and E rates show weak monthly and interannual consistency, and depending on the choice of ocean evaporation data, the mean annual cycle of global EP can be up to 5 times larger to that of TPW. The global ocean annual evaporation rates have as much as a ∼1% yr−1 increase during the period analyzed (1988–99), which is consistent in sign with most transient CO2 GCM simulations, but at least an order of magnitude larger. The ocean evaporation trends are driven by trends in SSM/I-retrieved near-surface atmospheric humidity and wind speed, and the largest year-to-year changes are coincident with transitions in the SSM/I fleet.

In light of (potential) global water cycle changes in GCM projections, the ability to consistently detect or verify these changes in nature rests upon one or more of the following: quantification of global evaporation uncertainty, at least a twofold improvement in consistency between the observationally based global precipitation and evaporation variations, a two order of magnitude rectification between annual variations of EP and precipitable water as well as substantial improvements in the consistency of their seasonal cycles, a critical reevaluation of intersatellite calibration for the relevant geophysical quantities used for ocean evaporation estimates, and the continuation of a dedicated calibration in this regard for future satellite transitions.

Corresponding author address: C. Adam Schlosser, MIT, E40-413, 1 Amherst St., Cambridge, MA 02048. Email: casch@mit.edu

Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis. J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Amenu, G. G., and P. Kumar, 2005: NVAP and reanalysis-2 global precipitable water products. Bull. Amer. Meteor. Soc., 86 , 245256.

  • Bacmeister, J. T., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: Atlas of Seasonal Means Simulated by the NSIPP1 Atmospheric GCM. Vol. 17, NASA Tech. Memo. 2000-104606, 194 pp.

  • Basist, A., G. D. Bell, and V. Meentemeyer, 1994: Statistical relationships between topography and precipitation patterns. J. Climate, 7 , 13051315.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance. Elsevier, 179 pp.

  • Bentamy, A., P. Queffeulou, Y. Quilfen, and K. Katsaros, 1999: Ocean surface wind field estimate from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens., 37 , 24692486.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Search Google Scholar
    • Export Citation
  • Berner, E. K., and R. A. Berner, 1987: The Global Water Cycle: Geochemistry and Environment. Prentice Hall, 397 pp.

  • Bosilovich, M., S. D. Schubert, and G. K. Walker, 2005: Global changes of the water cycle intensity. J. Climate, 18 , 15911608.

  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Licarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955-1998. Geophys. Res. Lett., 32 .L01604, doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16 , 619635.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., R. M. Atlas, C-L. Shie, and J. Ardizzone, 1995: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123 , 24052424.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., W. Chao, and M-D. Chou, 2000: Surface heat budgets and sea surface temperature in the Pacific warm pool during TOGA COARE. J. Climate, 13 , 634649.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Colton, M. C., and G. A. Poe, 1999: Intersensor calibration of DMSP SSM/Is: F-8 to F-14, 1987-1997. IEEE Trans. Geosci. Remote Sens., 37 , 418439.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, 2002: Introduction. Vol. 1, World Ocean Database 2001, NOAA Atlas NESDIS 42, 167 pp.

  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85 , 409424.

  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., R. Adler, G. Huffman, E. Nelkin, and D. Bolvin, 2001: Evolution of tropical and extratropical precipitation anomalies during the 1997-1999 ENSO cycle. Int. J. Climatol., 21 , 961971.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3 , 660687.

    • Search Google Scholar
    • Export Citation
  • Diak, G. R., J. R. Mecikalski, M. C. Anderson, J. M. Norman, W. P. Kustas, R. D. Torn, and R. L. DeWolf, 2004: Estimating land surface energy budgets from space. Bull. Amer. Meteor. Soc., 85 , 6578.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eishceid, 2001: ENSO variability, teleconnections, and climate change. Int. J. Climatol., 21 , 18451862.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and L. Tan, 2001: A multi-decadal global land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, Center for Ocean–Land–Atmosphere Studies, Calverton, MD, 43 pp.

  • Dirmeyer, P. A., X. Gao, and T. Oki, 2002: The Second Global Soil Wetness Project (GSWP2). GEWEX News, No. 37, International GEWEX Project Office, Silver Spring, MD, 75 pp.

  • Dirmeyer, P. A., Z. Guo, and X. Gao, 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5 , 10111033.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 1999: Global, composite runoff fields based on observed river discharge and simulated water balances. GRDC Rep. 22, Global Runoff Data Center, Koblenz, Germany, 36 pp.

  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16 .1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, J. O. Roads, and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17 , 294304.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33 .L08707, doi:10.1029/2006GL025734.

  • Groisman, P. Ya, R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5 , 6485.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18 , 13261350.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and C. Pfrang, 2005: A preliminary survey of ERA-40 users developing applications of relevance to GEO (Group on Earth Observations). ECMWF Newsletter, No. 104, ECMWF, Reading, United Kingdom, 5–9.

  • Hornberger, G. M., and Coauthors, 2001: A plan for a new science initiative on the global water cycle. U.S. Global Change Research Program, Washington, DC, 118 pp.

  • Houser, P. R., and J. K. Entin, 2005: NASA Energy and Water Cycle Study (NEWS). GEWEX News, No. 15, International GEWEX Project Office, Silver Spring, MD, 5–6.

  • Huffman, G. J., 1997: Estimates of root-mean square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Search Google Scholar
    • Export Citation
  • Jaeger, L., 1976: Monatskarten des Niederschlags für die ganze Erde. Vol. 18 (139), Berichte des Deutschen Wetterdienstes, 38 pp.

  • Janowiak, J., A. Gruber, C. R. Kondragunta, R. E. Livezy, and G. J. Huffman, 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11 , 29602979.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and K. E. Trenberth, 2003: Modern global climate change. Science, 302 , 17191723.

  • Kayane, I., 1986: Water of the world. World-Wide Weather, K. Takahashi, Ed., A. A. Balkema, 25–31.

  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21 , 10411066.

  • Kiktev, D., D. M. H. Sexton, L. Alexander, and C. K. Folland, 2003: Comparison and modeled and observed trends in indices of daily climate extremes. J. Climate, 16 , 35603571.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. K., and Y. Shukla, 1990: The global hydrologic and energy cycles: Suggestions for studies in the pre-Global Energy and Water Cycle Experiment (GEWEX). Bull. Amer. Meteor. Soc., 71 , 181189.

    • Search Google Scholar
    • Export Citation
  • Koblinsky, C. J., P. Hildebrand, D. LeVine, F. Pellerano, Y. Chao, W. Wilson, S. Yueh, and G. Lagerloef, 2003: Sea surface salinity from space: Science goals and measurement approach. Radio Sci., 38 .8064, doi:10.1029/2001RS002584.

    • Search Google Scholar
    • Export Citation
  • Korzun, V. I., 1978: World Water Balance and Water Resources of the Earth. (English translation). UNESCO Press, 663 pp.

  • Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16 , 670678.

    • Search Google Scholar
    • Export Citation
  • Leese, J. A., 2001: Coordinated Enhanced Observation Period (CEOP) implementation plan. GEWEX News, No. 36, International GEWEX Project Office, Silver Spring, MD, 113 pp.

  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–1988. J. Climate, 7 , 586607.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., A. J. DeCandis, and A. V. Mehta, 2005: Remote-sensing-based estimates of the fundamental global water cycle: Annual cycle. J. Geophys. Res., 110 .D22103, doi:10.1029/2004JD005672.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., D. Smith, and F. Wentz, 2001: A 10 year intercomparison between collocated Special Sensor Microwave Imager ocean surface wind speed retrievals and global analyses. J. Geophys. Res., 106 , 1173111742.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415 , 514517.

    • Search Google Scholar
    • Export Citation
  • Mischwaner, K., and A. E. Dessler, 2004: Water vapor feedback in the tropical upper troposphere: Model results and observations. J. Climate, 17 , 12721282.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1986: Global Change in the Geosphere–Biosphere. National Academies Press, 91 pp.

  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21 , 18991922.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, 2001: Predicting the discharge of global rivers. J. Climate, 14 , 33073323.

    • Search Google Scholar
    • Export Citation
  • Oki, T., T. Nishimura, and P. Dirmeyer, 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and M. A. Kettani, 1973: The control of the water cycle. Sci. Amer., 228 , 4661.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Räisänen, J., 2002: CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J. Climate, 15 , 23952411.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77 , 12331246.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., S-C. Chen, M. Kanamitsu, and H. Juang, 1999: Surface water characteristics in the NCEP Global Spectral Model and Reanalysis. J. Geophys. Res., 104 , 1930719327.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Roy, S. R., and R. C. Balling Jr., 2004: Trends in extreme daily precipitation indices in India. Int. J. Climatol., 24 , 457466.

  • Schlosser, C. A., and B. Kirtman, 2005: Predictable skill and its association to sea-surface temperature variations in an ensemble climate simulation. J. Geophys. Res., 110 .D19107, doi:10.1029/2005JD005835.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, A. Clement, and C. Herweijer, 2003: Why is there an evaporation minimum at the equator? J. Climate, 16 , 37933802.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, I. A., 1998: World water resources: A new appraisal and assessment for the 21st century. UNESCO, 40 pp.

  • Soden, B. J., 2000: The sensitivity of the tropical hydrological cycle to ENSO. J. Climate, 13 , 538549.

  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling following the eruption of Mt. Pinatubo: A test of climate feedback by water vapor. Science, 296 , 727730.

    • Search Google Scholar
    • Export Citation
  • Soluri, E. A., and V. A. Woodson, 1990: World vector shoreline. Int. Hydrogr. Rev., 68 , 2736.

  • Speidel, D. H., and A. F. Agnew, 1982: The Natural Geochemistry of our Environment. Westview Press, 214 pp.

  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrologic cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24 , 741758.

    • Search Google Scholar
    • Export Citation
  • Verschuren, D., K. R. Laird, and B. F. Cumming, 2000: Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403 , 410414.

    • Search Google Scholar
    • Export Citation
  • Vonder Harr, T., and Coauthors, 2003: Continuation of the NVAP global water vapor data sets for Pathfinder science analysis Science and Technology Corp. STC Tech. Rep. 3333, 44 pp. [Available online at http://eosweb.larc.nasa.gov/PRODOCS/nvap/sci_tech_report_3333.pdf.].

  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403 , 414416.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, M. E. Schlesinger, and W. Wang, 2003: Intensity of hydrological cycles in warmer climates. J. Climate, 16 , 24192423.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. Lettenmaier, 2003: Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. J. Climate, 16 , 535547.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1382 704 161
PDF Downloads 374 88 14