• Bengtsson, L. M., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A , 175196.

  • Bengtsson, L. M., M. Botzet, and M. Esch, 1996: Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A , 5773.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian semi-implicit wide-band atmospheric model suited for fine-scale process studies and simulation. Mon. Wea. Rev., 125 , 23822414.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., G. M. Flato, and D. Ramsden, 2000a: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate change to the 21st century. Climate Dyn., 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., G. M. Flato, M. C. Reader, and D. Ramsden, 2000b: A transient climate change simulation with greenhouse gas and aerosol forcing: Experimental design and comparison with the instrumental record for the twentieth century. Climate Dyn., 16 , 405425.

    • Search Google Scholar
    • Export Citation
  • Carillo, A., P. M. Ruti, and A. Nvarra, 2000: Storm tracks and zonal mean flow variability: A comparison between observed and simulated data. Climate Dyn., 16 , 219228.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. Jagger, and X-F. Niu, 2000: Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophys. Res. Lett., 27 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326 , 483485.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Fischer-Bruns, I., H. von Storch, J. F. González-Rouco, and E. Zorita, 2005: Modelling the variability of midlatitude storm activity on decadal to century time scales. Climate Dyn., 25 .doi:10.1007/s00382-005-0036-1.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28 , 195198.

  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis, global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16 , 28022805.

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 239 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14 , 546564.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79 , 1938.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knippertz, P., U. Ulbrich, and P. Speth, 2000: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Res., 15 , 109122.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dyn., 15 , 503519.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17 , 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279 , 10181020.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., T. L. Delworth, K. W. Dixon, and R. J. Stouffer, 1999: Model assessment of regional surface temperature trends (1949–1997). J. Geophys. Res., 104 , D24. 3098130996.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14 , 24582468.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., R. Correa-Torres, M. Latif, and G. Daughenbaugh, 1998: The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes. Tellus, 50A , 186210.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 2004: Changes in winter cyclone frequencies and strengths in transient enhanced greenhouse warming simulations using two coupled climate models. Atmos.–Ocean, 42 , 173181.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., N. Nicholls, W. M. Gray, and L. A. Avila, 1996: Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophys. Res. Lett., 23 , 16971700.

    • Search Google Scholar
    • Export Citation
  • Lunkeit, F., K. Fraedrich, and S. E. Bauer, 1998: Storm tracks in a warmer climate: Sensitivity studies with a simplified global circulation model. Climate Dyn., 14 , 813826.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2001: Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions: Hurricane Earl case study. Mon. Wea. Rev., 129 , 16171636.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2003: The influence of the downstream state on extratropical transitions: Hurricane Earl (1998) case study. Mon. Wea. Rev., 131 , 19101929.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61 , 23342348.

    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15 , 15731590.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., X. Ren, W. Zhang, and Z. Long, 2004: Simulation of extatropical Hurricane Gustav using a coupled atmosphere-ocean-sea spray model. Geophys. Res. Lett., 31 .L03110, doi:10.1029/2003GL018571.

    • Search Google Scholar
    • Export Citation
  • Ren, X., W. Perrie, Z. Long, J. Gyakum, and R. McTaggart-Cowan, 2004: On the atmosphere–ocean coupled dynamics of cyclones in midlatitudes. Mon. Wea. Rev., 132 , 24322451.

    • Search Google Scholar
    • Export Citation
  • Royer, J-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38 , 307343.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80 , 249272.

    • Search Google Scholar
    • Export Citation
  • Swail, V. R., and A. T. Cox, 2000: On the use of NCEP–NCAR reanalysis surface marine wind fields for a long-term North Atlantic wave hindcast. J. Atmos. Oceanic Technol., 17 , 532545.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118 , 19701980.

    • Search Google Scholar
    • Export Citation
  • Tonkin, H., G. J. Holland, C. W. Landsea, and S. Li, 1997: Tropical cyclones and climate change: A preliminary assessment. Assessing Climate Change: Results from the Model Evaluation Consortium for Climate Assessment, W. Howe and A. Henderson-Sellers, Eds., Gordon and Breach, 323–355.

  • Trenberth, K. E., 2005: Uncertainty in hurricanes and global warming. Science, 308 , 17531754.

  • Tsutsui, J-I., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80 , 4565.

    • Search Google Scholar
    • Export Citation
  • Tsutsui, J-I., and A. Kasahara, 1996: Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J. Geophys. Res., 101 , 1501315032.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. L. Anderson, and W. F. Stern, 1999: Impact of large-scale circulation on tropical storm frequency, intensity, and location, simulated by an ensemble of GCM integrations. J. Climate, 12 , 32373254.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and I. G. Watterson, 1997: Tropical cyclone-like vortices in a limited area model: Comparison with observed climatology. J. Climate, 10 , 22402259.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and J. J. Katzfey, 2000: The impact of climate change on the poleward movement of tropical cyclone–like vortices in a regional climate model. J. Climate, 13 , 11161132.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13 , 30293036.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., K-C. Nguyen, and J. L. McGregor, 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dyn., 22 , 4756.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 1999: Influence of greenhouse warming on tropical cyclone frequency simulated by a high resolution AGCM. Preprints, 23d Conf. Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 1081–1084.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 82 1
PDF Downloads 144 57 0

The Impacts of Climate Change on Autumn North Atlantic Midlatitude Cyclones

View More View Less
  • 1 Department of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 2 Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, and Dalhousie University, Halifax, Nova Scotia, Canada
Restricted access

Abstract

This study explores how midlatitude extratropical cyclone intensities, frequencies, and tracks can be modified under warming-induced conditions due to enhanced greenhouse gas (GHG) concentrations. Simulations were performed with the Canadian mesoscale compressible community (MC2) model driven by control and high CO2 climate estimates from the Canadian Climate Centre model, the Second Generation Coupled Global Climate Model (CGCM2). CGCM2 simulations have effective CO2 concentration forcing, following the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario conditions, which define a near doubling of CO2 concentrations by 2050 compared to the 1980s. The control and high CO2 conditions were obtained from years 1975–94 and 2040–59 of CGCM2 simulations. For the northwest Atlantic, the CO2-induced warming for this period (2040–59) varies from ∼1°–2°C in the subtropics, near the main development region for Atlantic hurricanes, to ∼1°C in the north. In simulations of northwest Atlantic storms, the net impact of this enhanced CO2 scenario is to cause storms to increase in radius, with marginal tendencies to become more severe and to propagate faster (although not statistically significant), and for the mean storm tracks to shift slightly poleward.

Corresponding author address: Dr. W. Perrie, Bedford Institute of Oceanography, P.O. Box 1006, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada. Email: perriew@dfo-mpo.gc.ca

Abstract

This study explores how midlatitude extratropical cyclone intensities, frequencies, and tracks can be modified under warming-induced conditions due to enhanced greenhouse gas (GHG) concentrations. Simulations were performed with the Canadian mesoscale compressible community (MC2) model driven by control and high CO2 climate estimates from the Canadian Climate Centre model, the Second Generation Coupled Global Climate Model (CGCM2). CGCM2 simulations have effective CO2 concentration forcing, following the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario conditions, which define a near doubling of CO2 concentrations by 2050 compared to the 1980s. The control and high CO2 conditions were obtained from years 1975–94 and 2040–59 of CGCM2 simulations. For the northwest Atlantic, the CO2-induced warming for this period (2040–59) varies from ∼1°–2°C in the subtropics, near the main development region for Atlantic hurricanes, to ∼1°C in the north. In simulations of northwest Atlantic storms, the net impact of this enhanced CO2 scenario is to cause storms to increase in radius, with marginal tendencies to become more severe and to propagate faster (although not statistically significant), and for the mean storm tracks to shift slightly poleward.

Corresponding author address: Dr. W. Perrie, Bedford Institute of Oceanography, P.O. Box 1006, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada. Email: perriew@dfo-mpo.gc.ca

Save