• AchutaRao, K., and K. R. Sperber, 2001: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and F-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14 , 34213432.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: The dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere ocean system: Influence of the basic state and ocean geometry. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Bonjean, F., 2001: Influence of surface currents on the sea surface temperature in the tropical Pacific Ocean. J. Phys. Oceanogr., 31 , 943961.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., J-P. Boulanger, F. Masia, and C. Menkes, 1994: Geosat-derived sea level and surface current anomalies in the equatorial Pacific during the 1986–1989 El Niño and La Niña. J. Geophys. Res., 99 , 2509325107.

    • Search Google Scholar
    • Export Citation
  • Delecluse, P., M. K. Davey, Y. Kitamura, S. G. H. Philander, M. Suarez, and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103 , 1435714373.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., F. Bonjean, and G. Reverdin, 1996: Interannual variability of surface currents in the tropical Pacific during 1987–1993. J. Geophys. Res., 101 , 36293647.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanaowski, V. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., and K. Hanawa, 2003: Heat content variability related to ENSO events in the Pacific. J. Phys. Oceanogr., 33 , 407421.

  • Hayes, S. P., L. J. Mangum, J. Picaut, A. Sumi, and K. Takeuchi, 1991: TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72 , 339347.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1988: Slow instabilities in tropical ocean basin–global atmosphere models. J. Atmos. Sci., 45 , 830852.

  • Jin, F-F., 1996: Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., and S-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Slingo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., and S-I. An, 2001: A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79 , 110.

  • Kessler, W. S., and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate, 8 , 10571072.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Nino simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Lau, N. C., S. G. H. Philander, and M. J. Nath, 1992: Simulation of ENSO-like phenomena with a law-resolution coupled GCM of the global ocean and atmosphere. J. Climate, 5 , 284307.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • McPhaden, M. J., and J. Picaut, 1990: El Niño–Southern Oscillation displacements of the western equatorial Pacific warm pool. Science, 250 , 13851388.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Philander, S. G. H., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. duPenhoat, 1997: An advective–reflective conceptual model for the oscillatory nature of ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation–El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., and F-F. Jin, 2005: A study of the impact of off-equatorial warm pool SST anomalies on ENSO cycles. J. Climate, 18 , 274286.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Vialard, J., C. Menkes, J. P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15 , 32523265.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and R. Lukas, 2000: Annual adjustment of the thermocline in the tropical Pacific Ocean. J. Climate, 13 , 596616.

  • Wang, C., and R. H. Weisberg, 1994: On the “slow mode” mechanism in ENSO-related coupled ocean–atmosphere models. J. Climate, 7 , 16571667.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Wang, W., S. Saha, H. L. Pan, S. Nadiga, and G. White, 2005: Simulation of ENSO in the new NCEP Coupled Forecast System Model (CFS03). Mon. Wea. Rev., 133 , 15741593.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate, 10 , 19982017.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 91103.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and C. R. Mechoso, 2001: A coupled atmosphere–ocean GCM study of the ENSO cycle. J. Climate, 14 , 23292350.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 105 5
PDF Downloads 141 110 1

Analysis of the ENSO Cycle in the NCEP Coupled Forecast Model

View More View Less
  • 1 RSIS/Climate Prediction Center, NCEP/NOAA, Camp Springs, Maryland
  • | 2 Climate Prediction Center, NCEP/NOAA, Camp Springs, Maryland
  • | 3 Meteorology Department, The Florida State University, Tallahassee, Florida
Restricted access

Abstract

Simulations from the National Centers for Environmental Prediction (NCEP) coupled model are analyzed to document and understand the behavior of the evolution of the El Niño–Southern Oscillation (ENSO) cycle. The analysis is of importance for two reasons: 1) the coupled model used in this study is also used operationally to provide model-based forecast guidance on a seasonal time scale, and therefore, an understanding of the ENSO mechanism in this particular coupled system could also lead to an understanding of possible biases in SST predictions; and 2) multiple theories for ENSO evolution have been proposed, and coupled model simulations are a useful test bed for understanding the relative importance of different ENSO mechanisms.

The analyses of coupled model simulations show that during the ENSO evolution the net surface heat flux acts as a damping mechanism for the mixed-layer temperature anomalies, and positive contribution from the advection terms to the ENSO evolution is dominated by the linear advective processes. The subsurface temperature–SST feedback, referred to as thermocline feedback in some theoretical literature, is found to be the primary positive feedback, whereas the advective feedback by anomalous zonal currents and the thermocline feedback are the primary sources responsible for the ENSO phase transition in the model simulation. The basic mechanisms for the model-simulated ENSO cycle are thus, to a large extent, consistent with those highlighted in the recharge oscillator. The atmospheric anticyclone (cyclone) over the western equatorial northern Pacific accompanied by a warm (cold) phase of the ENSO, as well as the oceanic Rossby waves outside of 15°S–15°N and the equatorial higher-order baroclinic modes, all appear to play minor roles in the model ENSO cycles.

* Current affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Qin Zhang, RSIS/Climate Prediction Center, NCEP/NOAA, 5200 Auth Road, Rm. 800, Camp Springs, MD 20746. Email: qin.zhang@noaa.gov

Abstract

Simulations from the National Centers for Environmental Prediction (NCEP) coupled model are analyzed to document and understand the behavior of the evolution of the El Niño–Southern Oscillation (ENSO) cycle. The analysis is of importance for two reasons: 1) the coupled model used in this study is also used operationally to provide model-based forecast guidance on a seasonal time scale, and therefore, an understanding of the ENSO mechanism in this particular coupled system could also lead to an understanding of possible biases in SST predictions; and 2) multiple theories for ENSO evolution have been proposed, and coupled model simulations are a useful test bed for understanding the relative importance of different ENSO mechanisms.

The analyses of coupled model simulations show that during the ENSO evolution the net surface heat flux acts as a damping mechanism for the mixed-layer temperature anomalies, and positive contribution from the advection terms to the ENSO evolution is dominated by the linear advective processes. The subsurface temperature–SST feedback, referred to as thermocline feedback in some theoretical literature, is found to be the primary positive feedback, whereas the advective feedback by anomalous zonal currents and the thermocline feedback are the primary sources responsible for the ENSO phase transition in the model simulation. The basic mechanisms for the model-simulated ENSO cycle are thus, to a large extent, consistent with those highlighted in the recharge oscillator. The atmospheric anticyclone (cyclone) over the western equatorial northern Pacific accompanied by a warm (cold) phase of the ENSO, as well as the oceanic Rossby waves outside of 15°S–15°N and the equatorial higher-order baroclinic modes, all appear to play minor roles in the model ENSO cycles.

* Current affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Qin Zhang, RSIS/Climate Prediction Center, NCEP/NOAA, 5200 Auth Road, Rm. 800, Camp Springs, MD 20746. Email: qin.zhang@noaa.gov

Save