Formation Mechanism for Isopycnal Temperature–Salinity Anomalies Propagating from the Eastern South Pacific to the Equatorial Region

Masami Nonaka Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Masami Nonaka in
Current site
Google Scholar
PubMed
Close
and
Hideharu Sasaki Earth Simulator Center, JAMSTEC, Yokohama, Japan

Search for other papers by Hideharu Sasaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Equatorward propagation of temperature–salinity (or spiciness) anomalies on an isopycnal surface emanating from the eastern subtropical South Pacific and their formation mechanism are investigated based on a hindcast simulation with an eddy-resolving quasi-global ocean general circulation model. Because of density-compensating meridional distributions of temperature and salinity, the meridional density gradient is weak at the sea surface in the eastern subtropical South Pacific. With these mean fields, cool sea surface temperature anomalies (SSTAs) can make the outcrop line of an isopycnal surface migrate equatorward more than 5° and induce warm and salty anomalies on the isopycnal surface. Subducted warm, salty anomalies propagate to the equatorial region over approximately 5 yr and may influence equatorial isopycnal temperature–salinity anomalies. Although the associated effects are unclear, if these anomalies could further induce warm eastern equatorial SSTAs that are positively correlated with eastern South Pacific SSTAs, opposite sign temperature–salinity anomalies would be formed in the subtropical South Pacific, and a closed cycle having a decadal time scale might be induced.

Corresponding author address: Masami Nonaka, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. Email: nona@jamstec.go.jp

Abstract

Equatorward propagation of temperature–salinity (or spiciness) anomalies on an isopycnal surface emanating from the eastern subtropical South Pacific and their formation mechanism are investigated based on a hindcast simulation with an eddy-resolving quasi-global ocean general circulation model. Because of density-compensating meridional distributions of temperature and salinity, the meridional density gradient is weak at the sea surface in the eastern subtropical South Pacific. With these mean fields, cool sea surface temperature anomalies (SSTAs) can make the outcrop line of an isopycnal surface migrate equatorward more than 5° and induce warm and salty anomalies on the isopycnal surface. Subducted warm, salty anomalies propagate to the equatorial region over approximately 5 yr and may influence equatorial isopycnal temperature–salinity anomalies. Although the associated effects are unclear, if these anomalies could further induce warm eastern equatorial SSTAs that are positively correlated with eastern South Pacific SSTAs, opposite sign temperature–salinity anomalies would be formed in the subtropical South Pacific, and a closed cycle having a decadal time scale might be induced.

Corresponding author address: Masami Nonaka, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. Email: nona@jamstec.go.jp

Save
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. McDougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4 , 438456.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Giese, B. S., S. C. Urizar, and N. S. Fuckar, 2002: Southern Hemisphere origins of the 1976 climate shift. Geophys. Res. Lett., 29 .1014, doi:10.1029/2001GL013268.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchange between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Z. Liu, 1999: Pacific subtropical–tropical thermocline water exchange in the National Centers for Environmental Prediction ocean model. J. Geophys. Res., 104 , 1106511076.

    • Search Google Scholar
    • Export Citation
  • Jenkins, W. J., 1982: On the climate of a subtropical ocean gyre: Decade timescale variations in water mass renewal in the Sargasso Sea. J. Mar. Res., 40 , (Suppl.). 265290.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2006: Generation and initial evolution of a mode water θ-S anomaly. J. Phys. Oceanogr., 36 , 739751.

  • Johnson, G. C., and M. J. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr., 29 , 30733089.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 1999: Interannual variability of the subsurface high salinity tongue south of the equator at 165°E. J. Phys. Oceanogr., 29 , 20382049.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., and T. Yamagata, 2001: Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106 , 2221122227.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30 .2250, doi:10.1029/2003GL018649.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., L. M. Rothstein, R-H. Zhang, and A. J. Busalacchi, 2005: On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model. J. Geophys. Res., 110 .C10002, doi:10.1029/2004JC002655.

    • Search Google Scholar
    • Export Citation
  • Masuda, S., T. Awaji, N. Sugiura, Y. Ishikawa, K. Baba, K. Horiuchi, and N. Komori, 2003: Improved estimates of the dynamical state of the North Pacific Ocean from a 4 dimensional variational data assimilation. Geophys. Res. Lett., 30 .1868, doi:10.1029/2003GL017604.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1 , 3556.

    • Search Google Scholar
    • Export Citation
  • McCreary Jr., J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Showdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2000: Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys. Res. Lett., 27 , 37473750.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and K. Takeuchi, 2001: Tropical subsurface salinity and tritium distributions in the Pacific: Their differences and formation mechanisms. J. Phys. Oceanogr., 31 , 13881395.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., S-P. Xie, and K. Takeuchi, 2000: Equatorward spreading of a passive tracer with application to North Pacific interdecadal temperature variations. J. Oceanogr., 56 , 173183.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., S-P. Xie, and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29 .1116, doi:10.1029/2001GL013717.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19 , 19701989.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2007: An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, in press.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 2000: A decadal spiciness mode in the tropics. Geophys. Res. Lett., 27 , 257260.

  • Schneider, N., 2004: The response of tropical climate to the equatorial emergence of spiciness anomalies. J. Climate, 17 , 10831095.

  • Schneider, N., S. Venzke, A. J. Miller, D. W. Pierce, T. P. Barnett, C. Deser, and M. Latif, 1999: Pacific thermocline bridge revisited. Geophys. Res. Lett., 26 , 13291332.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., E. D. Lorenzo, and P. P. Niiler, 2005: Salinity variations in the Southern California current. J. Phys. Oceanogr., 35 , 14211436.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. McCreary, and G. C. Johnson, 2004: Shallow overturning circulations of the tropical subtropical oceans. Earth Climate: The OceanAtmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Suga, T., A. Kato, and K. Hanawa, 2000: North Pacific tropical water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, Vol. 47, Pergamon Press, 223–256.

  • Wong, A. P. S., and G. C. Johnson, 2003: South Pacific eastern subtropical mode water. J. Phys. Oceanogr., 33 , 14931509.

  • Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34 , 15281547.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 651 179 77
PDF Downloads 250 51 4