• Allan, R. J., and M. R. Haylock, 1993: Circulation features associated with the winter rainfall decrease in Southwestern Australia. J. Climate, 6 , 13561367.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., J. A. Lindesay, and C. J. C. Reason, 1995: Multidecadal variability in the climate system over the Indian Ocean region during the Austral summer. J. Climate, 8 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. T. Potemra, R. Murtugudde, and J. P. McCreary, 2005: Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J. Climate, 18 , 34503469.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., M. Latif, E. Kirk, and E. Roeckner, 1991: On ENSO physics. J. Climate, 4 , 487515.

  • Clarke, A., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24 , 12241235.

  • Dai, A., G. A. Meehl, W. M. Washington, and T. M. L. Wigley, 2001: Ensemble simulations of twenty-first century climate changes: Business-as-usual versus CO2 simulation. Bull. Amer. Meteor. Soc., 82 , 23772388.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1996: The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101 , 1221712238.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline waters. J. Geophys. Res., 91 , 50375046.

  • Hautala, S. L., J. Sprintall, J. T. Potemra, A. G. Ilahude, J. C. Chong, W. Pandoe, and N. Bray, 2001: Velocity structure and transport of the Indonesian throughflow in the major straits restricting flow into the Indian Ocean. J. Geophys. Res., 106 , 1952719546.

    • Search Google Scholar
    • Export Citation
  • Hirst, A., and J. S. Godfrey, 1993: The role of Indonesian throughflow in a global ocean GCM. J. Phys. Oceanogr., 23 , 10571086.

  • Hirst, A., and J. S. Godfrey, 1994: The response to a sudden change in Indonesian throughflow in a global ocean GCM. J. Phys. Oceanogr., 24 , 18951910.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. M. C., A. J. Weaver, and J. S. Godfrey, 1992: Thermocline forcing of the Indian Ocean by the Pacific Ocean. Deep-Sea Res. I, 39 , 965995.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8 , 952964.

  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19 , 16051623.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. Gent, J. M. Arblaster, B. Otto-Bliesner, E. Brady, and A. Craig, 2001: Factors that affect amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings and twentieth-century climate. J. Climate, 17 , 37213727.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 1999: Seasonal variations of the Pacific to Indian Ocean throughflow. J. Phys. Oceanogr., 29 , 29302944.

  • Potemra, J. T., and R. Lukas, 1999: Seasonal to interannual modes of sea level variability in the western Pacific and eastern Indian Ocean. Geophys. Res. Lett., 26 , 365368.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., S. L. Hautala, and J. Sprintall, 2003: Vertical structure of Indonesian throughflow in a large-scale model. Deep-Sea Res. II, 50 , 21432162.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, and J. A. Lindesay, 1996a: Evidence for the influence of remote forcing on interdecadal variability in the Southern Indian Ocean. J. Geophys. Res., 101 , 1186711882.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, and J. A. Lindesay, 1996b: Dynamical response of the oceanic circulation and temperature to interdecadal variability in the surface winds over the Indian Ocean. J. Climate, 9 , 97114.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 1998: The Indonesian throughflow and the global climate system. J. Climate, 11 , 676689.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Song, Q., A. L. Gordon, and M. Visbeck, 2004: Spreading of the Indonesian throughflow in the Indian Ocean. J. Phys. Oceanogr., 34 , 772792.

    • Search Google Scholar
    • Export Citation
  • Verschell, M. A., J. C. Kindle, and J. J. O’Brien, 1995: Effects of Indo-Pacific throughflow on the upper tropical Pacific and Indian Oceans. J. Geophys. Res., 100 , 1840918420.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., A. L. Gordon, and A. Field, 2002: The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res. II, 49 , 13911410.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2002: Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow. Climate Dyn., 18 , 437453.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian throughflow’s effect on global climate determined from the COLA Coupled Climate System. J. Climate, 14 , 30293042.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Wyrtki, K., 1987: Indonesian throughflow and the associated pressure gradient. J. Geophys. Res., 92 , 1294112946.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 30 2
PDF Downloads 34 18 0

Influence of Low-Frequency Indonesian Throughflow Transport on Temperatures in the Indian Ocean in a Coupled Model

View More View Less
  • 1 School of Ocean and Earth Science and Technology, and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

The relationship between 3- and 10-yr variability in Indian Ocean temperatures and Indonesian throughflow (ITF) volume transport is examined using results from a 300-yr integration of the coupled NCAR Parallel Climate Model (PCM). Correlation and regression analyses are used with physical reasoning to estimate the relative contributions of changes in ITF volume transport and Indian Ocean surface atmospheric forcing in determining low-frequency temperature variations in the Indian Ocean. In the PCM, low-frequency variations in ITF transport are small, 2 Sv (1 Sv ≡ 106 m3 s−1), and have a minimal impact on sea surface temperatures (SSTs). Most of the low-frequency variance in Indian Ocean temperature (rms > 0.5°C) occurs in the upper thermocline (75–100 m). These variations largely reflect concurrent atmospheric forcing; ITF-induced temperature variability at this depth is limited to the outflow region between Java and Australia extending westward along a band between 10° and 15°S.

* School of Ocean and Earth Science and Technology Contribution Number 7037 and International Pacific Research Center Contribution Number IPRC-431

Corresponding author address: J. T. Potemra, SOEST/IPRC, University of Hawaii at Manoa, 1680 East–West Road, POST-401, Honolulu, HI 96822. Email: jimp@hawaii.edu

Abstract

The relationship between 3- and 10-yr variability in Indian Ocean temperatures and Indonesian throughflow (ITF) volume transport is examined using results from a 300-yr integration of the coupled NCAR Parallel Climate Model (PCM). Correlation and regression analyses are used with physical reasoning to estimate the relative contributions of changes in ITF volume transport and Indian Ocean surface atmospheric forcing in determining low-frequency temperature variations in the Indian Ocean. In the PCM, low-frequency variations in ITF transport are small, 2 Sv (1 Sv ≡ 106 m3 s−1), and have a minimal impact on sea surface temperatures (SSTs). Most of the low-frequency variance in Indian Ocean temperature (rms > 0.5°C) occurs in the upper thermocline (75–100 m). These variations largely reflect concurrent atmospheric forcing; ITF-induced temperature variability at this depth is limited to the outflow region between Java and Australia extending westward along a band between 10° and 15°S.

* School of Ocean and Earth Science and Technology Contribution Number 7037 and International Pacific Research Center Contribution Number IPRC-431

Corresponding author address: J. T. Potemra, SOEST/IPRC, University of Hawaii at Manoa, 1680 East–West Road, POST-401, Honolulu, HI 96822. Email: jimp@hawaii.edu

Save