Analysis of the Dominant Mode of Convectively Coupled Kelvin Waves in the West African Monsoon

Flore Mounier LMD/IPSL, CNRS, École Polytechnique, Palaiseau, France

Search for other papers by Flore Mounier in
Current site
Google Scholar
PubMed
Close
,
George N. Kiladis Physical Sciences Division, NOAA/ESRL, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
, and
Serge Janicot LOCEAN/IPSL, IRD, Université Pierre et Marie Curie, Paris, France

Search for other papers by Serge Janicot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dominant mode of convectively coupled Kelvin waves has been detected over the Atlantic and Africa during northern summer by performing composite analyses on observational fields based on an EOF reconstructed convection index over West Africa. Propagating eastward, many waves originate from the Pacific sector, interact with deep convection of the marine ITCZ over the Atlantic and the continental ITCZ over West and central Africa, and then weaken over East Africa and the Indian Ocean. It has been shown that they are able to modulate the life cycle and track of individual westward-propagating convective systems. Their mean kinematic characteristics comprise a wavelength of 8000 km, and a phase speed of 15 m s−1, leading to a period centered on 6 to 7 days. The African Kelvin wave activity displays large seasonal variability, being highest outside of northern summer when the ITCZ is close to the equator, facilitating the interactions between convection and these equatorially trapped waves. The convective and dynamical patterns identified over the Atlantic and Africa show some resemblance to the theoretical equatorially trapped Kelvin wave solution on an equatorial β plane. Most of the flow is in the zonal direction as predicted by theory, and there is a tendency for the dynamical fields to be symmetric about the equator, even though the ITCZ is concentrated well north of the equator at the full development of the African monsoon. In the upper troposphere and the stratosphere, the temperature contours slope sharply eastward with height, as expected from an eastward-moving heat source that forces a dry Kelvin wave response. It is finally shown that the mean impact of African Kelvin waves on rainfall and convection is of the same level as African easterly waves.

Corresponding author address: Dr. Serge Janicot, LOCEAN/IPSL, Université Pierre et Marie Curie, Boite 100, 4 Place Jussieu, 75252 Paris CEDEX 5, France. Email: jslod@lodyc.jussieu.fr

Abstract

The dominant mode of convectively coupled Kelvin waves has been detected over the Atlantic and Africa during northern summer by performing composite analyses on observational fields based on an EOF reconstructed convection index over West Africa. Propagating eastward, many waves originate from the Pacific sector, interact with deep convection of the marine ITCZ over the Atlantic and the continental ITCZ over West and central Africa, and then weaken over East Africa and the Indian Ocean. It has been shown that they are able to modulate the life cycle and track of individual westward-propagating convective systems. Their mean kinematic characteristics comprise a wavelength of 8000 km, and a phase speed of 15 m s−1, leading to a period centered on 6 to 7 days. The African Kelvin wave activity displays large seasonal variability, being highest outside of northern summer when the ITCZ is close to the equator, facilitating the interactions between convection and these equatorially trapped waves. The convective and dynamical patterns identified over the Atlantic and Africa show some resemblance to the theoretical equatorially trapped Kelvin wave solution on an equatorial β plane. Most of the flow is in the zonal direction as predicted by theory, and there is a tendency for the dynamical fields to be symmetric about the equator, even though the ITCZ is concentrated well north of the equator at the full development of the African monsoon. In the upper troposphere and the stratosphere, the temperature contours slope sharply eastward with height, as expected from an eastward-moving heat source that forces a dry Kelvin wave response. It is finally shown that the mean impact of African Kelvin waves on rainfall and convection is of the same level as African easterly waves.

Corresponding author address: Dr. Serge Janicot, LOCEAN/IPSL, Université Pierre et Marie Curie, Boite 100, 4 Place Jussieu, 75252 Paris CEDEX 5, France. Email: jslod@lodyc.jussieu.fr

Save
  • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107 , 13821387.

    • Search Google Scholar
    • Export Citation
  • Cattell, R. B., 1966: The scree test for the number of factors. Multivariate Behav. Res., 1 , 245276.

  • Diedhiou, A. S., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from NCEP/NCAR and ECMWF reanalysis. Climate Dyn., 15 , 795822.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1989: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part I: Interannual and diurnal variations. Mon. Wea. Rev., 117 , 27822799.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1990: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part II: Modulation by easterly waves. Mon. Wea. Rev., 118 , 18551868.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperature 1901–1985. Nature, 320 , 602607.

  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14 , 13371359.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and J. A. Carton, 2001: Coupled land/atmosphere interactions in the West African monsoon. Geophys. Res. Lett., 28 , 15031506.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, and S. Nigam, 2003: Near surface westerly wind jet in the Atlantic ITCZ. Geophys. Res. Lett., 30 .2009, doi:10.1029/2003GL017867.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., 1974: The wavenumber–frequency spectra of satellite-measured brightness in the Tropics. J. Atmos. Sci., 31 , 16751680.

  • Gruber, A., and A. F. Krueger, 1974: The status of the NOAA outgoing longwave radiation data set. Bull. Amer. Meteor. Soc, 65 , 958962.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63 , 22312245.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1995: Climate Dynamics of the Tropics. Kluwer Academic, 488 pp.

  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125 , 28212837.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., and B. Sultan, 2001: Intra-seasonal modulation of convection in the West African monsoon. Geophys. Res. Lett., 28 , 523526.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., S. Trzaska, and I. Poccard, 2001: Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Climate Dyn., 18 , 303320.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yarg, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc, 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125 , 19972013.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63 , 22122230.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993: Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121 , 22542263.

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123 , 389405.

    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., 1978a: Large scale tropical surface circulation patterns associated with Subsaharan weather anomalies. Tellus, 30 , 240251.

    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., 1978b: Case studies of tropical Atlantic surface circulation patterns during recent sub-Saharan weather anomalies: 1967 and 1968. Mon. Wea. Rev., 106 , 482491.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127 , 377406.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective systems rainfall in the Sahel. J. Appl. Meteor., 41 , 10811092.

  • Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • Matthews, M., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17 , 24272440.

  • Mekonnen, A., 2006: The role of Kelvin wave activity on convection and rainfall over tropical Africa. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 23–28.

  • Mounier, F., and S. Janicot, 2004: Evidence of two independent modes of convection at intraseasonal timescale in the West African summer monsoon. Geophys. Res. Lett., 31 .L16116, doi:10.1029/2004GL020665.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and J. E. Kidson, 1984: African mean wind changes between Sahelian wet and dry periods. J. Climatol., 4 , 2733.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal function. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Pires, P., J-L. Redelsperger, and J-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125 , 11671184.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105 , 317333.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation on principal component. J. Climatol., 6 , 293335.

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Rowell, D. P., 2001: Teleconnections between the tropical Pacific and the Sahel. Quart. J. Roy. Meteor. Soc, 127 , 16831706.

  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–1992): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121 , 669704.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16 , 34073427.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., S. Janicot, and A. Diedhiou, 2003: The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16 , 33893406.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433449.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994a: An idealized study of African easterly waves. Part I: A linear view. Quart. J. Roy. Meteor. Soc., 120 , 953982.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994b: An idealized study of African easterly waves. Part II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120 , 9831015.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20 , 11881201.

    • Search Google Scholar
    • Export Citation
  • Ward, M. N., 1998: Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J. Climate, 11 , 31673191.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., 1975: Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Wea. Rev., 103 , 904920.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46 , 36323652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 643 231 88
PDF Downloads 415 131 9