• Abdulla, F. A., , D. P. Lettenmaier, , E. F. Wood, , and J. A. Smith, 1996: Application of a macroscale hydrologic model to estimate the water balance of the Arkansas–Red River basin. J. Geophys. Res., 101 , 74497459.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Barnett, T. P., , L. Dumenil, , U. Schlese, , E. Roeckner, , and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46 , 661685.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , R. E. Livezey, , and M. S. Halpert, 1991: Modulation of Southern Oscillation–Northern Hemisphere mid-winter climate relationships by the QBO. J. Climate, 4 , 203217.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., , G. Kiladis, , and R. S. Bradley, 1981: Synoptic climatology of the western United States in relation to climatic fluctuation during the twentieth century. J. Climatol., 1 , 97113.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., , T. B. Mckee, , and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14 , 44494473.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., , and S. Hastenrath, 1990: Convection and rainfall over Mexico and their modulation by the Southern Oscillation. Int. J. Climatol., 10 , 377386.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., , and D. Rivas, 2004: Variability of extreme precipitation events in Tijuana, Mexico. Climate Res., 25 , 229243.

  • Comrie, A. C., , and E. C. Glenn, 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10 , 201215.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , D. R. Cayan, , H. F. Diaz, , and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11 , 30953111.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , R. A. Maddox, , and K. Howard, 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Englehart, P. J., , and A. V. Douglas, 2001: The role of eastern Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol., 21 , 13571370.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in south and East Asia. J. Meteor. Soc. Japan, 75 , 180186.

  • Fu, C. B., , and J. O. Fletcher, 1985: The relationship between Tibet-tropical ocean thermal contrast and interannual variability of Indian monsoon rainfall. J. Appl. Meteor., 24 , 841847.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., , and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79 , 27152725.

  • Gershunov, A., , and D. R. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climate variability and seasonal predictability. J. Climate, 16 , 27522765.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , J. C. Leal, , W. J. Shuttleworth, , C. J. Watts, , and J. Garatuza-Payan, 2003: Preliminary diagnostics from a new event-based precipitation monitoring system in support of the North American Monsoon Experiment. J. Hydrometeor., 4 , 974981.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , A. Jimenez, , C. J. Watts, , J. Garatuza-Payan, , and W. J. Shuttleworth, 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment Event Rain Gauge Network. Mon. Wea. Rev., 132 , 29382953.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2000: Covariability of spring snowpack and summer rainfall across the southwest United States. J. Climate, 13 , 40184027.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2004: An index of interannual precipitation variability in the core of the North American monsoon region. J. Climate, 17 , 44734480.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and K. C. Mo, 1998: Interannual variability of the U.S. summer precipitation regime with emphasis on the southwestern monsoon. J. Climate, 11 , 25822606.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13 , 759776.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Y. Yao, , and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Y. Chen, , and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12 , 653680.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and F. Song, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15 , 11891202.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and F. Song, 2004: Why has the land memory changed? J. Climate, 17 , 32363243.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., , and K. C. Mo, 2003: Dynamical effect of land surface processes on summer precipitation over the southwestern United States. J. Climate, 16 , 496509.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9 , 358375.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. P. Lettenmaier, , E. F. Wood, , and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., , V. Lakshmi, , and B. Small, 2003: Links between snow cover, surface skin temperature, and rainfall variability in the North American monsoon system. J. Climate, 16 , 18211829.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , A. W. Wood, , J. C. Adam, , D. P. Lettenmaier, , and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114 , 24882515.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , J. N. Paegle, , and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10 , 30283046.

    • Search Google Scholar
    • Export Citation
  • Mock, C. K., 1996: Climatic controls and spatial variations of precipitation in the western United States. J. Climate, 9 , 11111125.

  • Nijssen, B., , R. Schnur, , and D. P. Lenttenmaier, 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108 .8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Rowson, D. R., , and S. J. Colucci, 1992: Synoptic climatology of thermal low-pressure systems over south-western North America. Int. J. Climatol., 12 , 529545.

    • Search Google Scholar
    • Export Citation
  • Rumney, G., 1968: Climatology and the World’s Climates. Macmillan, 656 pp.

  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28 , 139142.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24782488.

  • Stensrud, D. J., , R. L. Gall, , S. L. Mullen, , and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751794.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , R. J. Gall, , and M. K. Nordquist, 1997: Surges over the Gulf of California during the Mexico monsoon. Mon. Wea. Rev., 125 , 417437.

    • Search Google Scholar
    • Export Citation
  • Tang, M., , and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112 , 617637.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1987: The elementary monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., John Wiley and Sons, 3–32.

  • Zhu, C., , and D. P. Lettenmaier, 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20 , 19441954.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., , D. P. Lettenmaier, , and T. Cavazos, 2005: Role of antecedent land surface conditions on North American monsoon rainfall variability. J. Climate, 18 , 28242841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 9
PDF Downloads 9 9 2

Role of Antecedent Land Surface Conditions in Warm Season Precipitation over Northwestern Mexico

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • | 2 Department of Physical Oceanography, CICESE, Ensenada, Baja California, Mexico
  • | 3 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The role of antecedent land surface conditions including precipitation (P), surface skin temperature (Ts), soil moisture (Sm), and snow water equivalent (SWE) anomalies on the onset and intensity of the monsoon during the 1950–99 period in the core of the North American monsoon system (NAMS) region in northwestern Mexico (termed MSa here) is explored. A statistically significant positive relationship is found between monsoon onset date in MSa and previous winter precipitation in the southwestern United States (SW) and northwestern (NW) Mexico, and winter SWE in the southern Rocky Mountains. The linkages are strong during the 1960s–80s and weak otherwise, which is a much shorter period than had been found previously for an SW target area termed monsoon west (MW). In the MW study, the following land surface feedback hypothesis was proposed: more winter P and SWE lead to more spring Sm, hence lower spring and early summer Ts, which induce a weaker onset of the NAMS. This hypothesis broke down in MW due to the small contribution of land surface memory to surface thermal condition, and hence to monsoon strength. The same hypothesis is in this work for MSa by examining three links. First, it is found that in May not only the total column, but also the near-surface Sm, in both SW and NW Mexico have memory from the previous winter precipitation. The spring Sm anomalies correlate negatively with Ts anomalies over most of the continental United States and Mexico except for the desert region of SW and NW Mexico. The monsoon onset is negatively correlated with May Ts over an area roughly consisting of New Mexico and some adjacent areas, suggesting that antecedent land surface conditions may influence the premonsoon surface thermal condition, which then affects monsoon onset. The monsoon-driving force concept that states that the strength of the monsoon should be related to premonsoon land–sea surface temperature contrasts is also confirmed. The confirmation of this concept shows that late monsoon years are associated with colder land and warmer adjacent ocean than early monsoon years. In addition to the apparent land surface feedback, a strong positive relationship between May Ts anomalies and the large-scale midtropospheric circulation (Z500) anomalies is found, which suggests that large-scale circulation may play a strong (possibly more important than land feedback) role in modulating the monsoon onset.

Corresponding author address: Dennis P. Lettenmaier, Dept. of Civil and Environmental Engineering, University of Washington, 202D Wilson Ceramic Lab, Box 352700, Seattle, WA 98195-2700. Email: dennisl@u.washington.edu

This article included in the North American Monsoon Experiment (NAME) special collection.

Abstract

The role of antecedent land surface conditions including precipitation (P), surface skin temperature (Ts), soil moisture (Sm), and snow water equivalent (SWE) anomalies on the onset and intensity of the monsoon during the 1950–99 period in the core of the North American monsoon system (NAMS) region in northwestern Mexico (termed MSa here) is explored. A statistically significant positive relationship is found between monsoon onset date in MSa and previous winter precipitation in the southwestern United States (SW) and northwestern (NW) Mexico, and winter SWE in the southern Rocky Mountains. The linkages are strong during the 1960s–80s and weak otherwise, which is a much shorter period than had been found previously for an SW target area termed monsoon west (MW). In the MW study, the following land surface feedback hypothesis was proposed: more winter P and SWE lead to more spring Sm, hence lower spring and early summer Ts, which induce a weaker onset of the NAMS. This hypothesis broke down in MW due to the small contribution of land surface memory to surface thermal condition, and hence to monsoon strength. The same hypothesis is in this work for MSa by examining three links. First, it is found that in May not only the total column, but also the near-surface Sm, in both SW and NW Mexico have memory from the previous winter precipitation. The spring Sm anomalies correlate negatively with Ts anomalies over most of the continental United States and Mexico except for the desert region of SW and NW Mexico. The monsoon onset is negatively correlated with May Ts over an area roughly consisting of New Mexico and some adjacent areas, suggesting that antecedent land surface conditions may influence the premonsoon surface thermal condition, which then affects monsoon onset. The monsoon-driving force concept that states that the strength of the monsoon should be related to premonsoon land–sea surface temperature contrasts is also confirmed. The confirmation of this concept shows that late monsoon years are associated with colder land and warmer adjacent ocean than early monsoon years. In addition to the apparent land surface feedback, a strong positive relationship between May Ts anomalies and the large-scale midtropospheric circulation (Z500) anomalies is found, which suggests that large-scale circulation may play a strong (possibly more important than land feedback) role in modulating the monsoon onset.

Corresponding author address: Dennis P. Lettenmaier, Dept. of Civil and Environmental Engineering, University of Washington, 202D Wilson Ceramic Lab, Box 352700, Seattle, WA 98195-2700. Email: dennisl@u.washington.edu

This article included in the North American Monsoon Experiment (NAME) special collection.

Save