• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Bosilovich, M. G., , and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3 , 149165.

    • Search Google Scholar
    • Export Citation
  • Brito-Castillo, L., , A. V. Douglas, , A. Leyva-Contreras, , and D. Lluch-Belda, 2003: The effect of large-scale circulation on precipitation and streamflow in the Gulf of California continental watershed. Int. J. Climatol., 23 , 751768.

    • Search Google Scholar
    • Export Citation
  • Brown, D. E., 1994: Biotic Communities: Southwestern United States and Northwestern Mexico. University of Utah Press, 342 pp.

  • Brown, D. P., , and A. C. Comrie, 2002: Spatial modeling of winter precipitation in Arizona and New Mexico. Climate Res., 22 , 115128.

  • CNA, 2002: Determinación de la disponibilidad de agua en el acuífero Río Sonora, Estado Sonora. Comisión Nacional del Agua, 42 pp.

  • CNA, 2004: Aforo de Aguas Superficiales Estación El Cajón, Río San Miguel. Subgerencia Regional del Noroeste, Comisión Nacional del Agua.

  • Coblentz, D. D., , and K. H. Riitters, 2004: Topographic controls on the regional-scale biodiversity of the south-western USA. J. Biogeogr., 31 , 11251138.

    • Search Google Scholar
    • Export Citation
  • Cosh, M. H., , T. J. Jackson, , R. Bindlish, , and J. H. Prueger, 2004: Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sens. Environ., 92 , 427435.

    • Search Google Scholar
    • Export Citation
  • Cosh, M. H., , T. J. Jackson, , R. Bindlish, , J. S. Famiglietti, , and D. Ryu, 2005: Calibration of an impedance probe for estimation of surface soil water content over large regions. J. Hydrol., 311 , 4958.

    • Search Google Scholar
    • Export Citation
  • Descroix, L., , J. L. Gonzalez Barrios, , J. P. Vandervaere, , D. Viramontes, , and A. Bollery, 2002a: An experimental analysis of hydrodynamic behavior on soils and hillslopes in a subtropical mountainous environment (western Sierra Madre, Mexico). J. Hydrol., 266 , 114.

    • Search Google Scholar
    • Export Citation
  • Descroix, L., , J-F. Nouvelot, , and M. Vauclin, 2002b: Evaluation of antecedent precipitation index to model runoff yield in the western Sierra Madre. J. Hydrol., 263 , 114130.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , R. A. Maddox, , K. Howard, , and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Eltahir, E. A. B., 1998: A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Entekhabi, D., 1995: Recent advances in land–atmosphere interaction research. Rev. Geophys., 33 , S1. 9951004.

  • Famiglietti, J. S., , J. W. Rudnicki, , and M. Rodell, 1998: Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol., 210 , 259281.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , E. R. Vivoni, , C. J. Watts, , and J. C. Rodríguez, 2007: Submesoscale spatiotemporal variability of North American monsoon rainfall over complex terrain. J. Climate, 20 , 17511773.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , A. Jiménez, , C. J. Watts, , J. Garatuza-Payán, , and W. J. Shuttleworth, 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment event rain gauge network. Mon. Wea. Rev., 132 , 29382953.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , L. Brito-Castillo, , and W. J. Shuttleworth, 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316 , 5370.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. G., 2004: An index of interannual precipitation variability in the core of the North American monsoon region. J. Climate, 17 , 44734480.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. G., , and J. Preston, 1997: Evidence for a relationship between spring snow cover in North American and summer rainfall in New Mexico. Geophys. Res. Lett., 24 , 22072210.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Coauthors, 2003: Progress in pan American CLIVAR research: North American monsoon system. Atmósfera, 16 , 2965.

  • INEGI, 1998: Modelos Digitales de Elevación 1:250, 000. Instituto Nacional de Estadística, Geografía e Informática.

  • INIFAP, 2001: Inventario Nacional de Suelos 1:250, 000. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.

  • Jackson, T. J., , and A. Y. Hsu, 2001: Soil moisture and TRMM Microwave Imager relationships in the Southern Great Plains 1999 (SGP99) experiment. IEEE Trans. Geosci. Remote Sens., 39 , 16321642.

    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., , and E. E. Small, 2004: Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res., 40 .W09305, doi:10.1029/2004WR003068.

    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., , T. J. Jackson, , and D. Zehrfuhs, 2003: Soil moisture–temperature relationships: Results from two field experiments. Hydrol. Processes, 17 , 30413057.

    • Search Google Scholar
    • Export Citation
  • Luo, W., 1998: Hypsometric analysis with a geographic information system. Comput. Geosci., 24 , 815822.

  • Matsui, T., , V. Lakshmi, , and E. E. Small, 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18 , 2140.

    • Search Google Scholar
    • Export Citation
  • NAME Project Science Team, 2004: North American Monsoon Experiment (NAME): Science and implementation plan. NOAA/NCEP/CPC, 96 pp. [Available online at http://www.cpc.ncep.noaa.gov/products/precip/monsoon/.].

  • Paredes-Aguilar, R., , T. R. Van Devender, , and R. S. Fegler, 2000: Cactáceas de Sonora, Mexico: Su Diversidad, Uso y Conservación. Arizona-Sonora Desert Museum Press, 132 pp.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., 2000: Ecohydrology: A hydrologic perspective on climate–soil–vegetation dynamics. Water Resour. Res., 36 , 39.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course on Cloud Physics. 3d ed. Butterworth-Heinemann, 304 pp.

  • Salinas-Zavala, C. A., , A. V. Douglas, , and H. F. Díaz, 2002: Interannual variability of NDVI in northwest Mexico: Associated climatic mechanisms and ecological implications. Remote Sens. Environ., 82 , 417430.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., , T. J. Jackson, , W. P. Kustas, , R. Roberts, , R. Parry, , D. C. Goodrich, , S. A. Amer, , and M. A. Weltz, 1994: Push broom microwave radiometer observations of surface soil moisture in Monsoon ’90. Water Resour. Res., 30 , 13211328.

    • Search Google Scholar
    • Export Citation
  • Seyfried, M. S., , and M. D. Murdock, 2004: Measurement of soil water content with a 50-MHz soil dielectric sensor. Soil Sci. Soc. Amer. J., 68 , 394403.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. R., , A. C. Comrie, , G. D. Packin, , K. Angersbach, , and M. K. Hughes, 2002: The climate of the US southwest. Climate Res., 21 , 219238.

    • Search Google Scholar
    • Export Citation
  • SIUE-IMADES, 1998: Proyecto de Ordenamiento Ecológico del Territorio del Estado de Sonora. Instituto del Medio Ambiente y Desarrollo Sustentable del Estado de Sonora, 577 pp.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28 , 139142.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., , and S. A. Kurc, 2003: Tight coupling between soil moisture and the surface radiation budget in semiarid environments: Implications for land–atmosphere interactions. Water Resour. Res., 39 .1278, doi:10.1029/2002WR001297.

    • Search Google Scholar
    • Export Citation
  • SMEX Science Team, 2004: Soil Moisture Experiments in 2004: Experiment plan. USDA, 132 pp. [Available online at http://hydrolab.arsusda.gov/smex04/.].

  • SPP, 1984: Carta Geológica 1:250, 000 H12-5. 1st ed. Dirección General de Geografía, México, Secretaría de Programación y Presupuesto.

  • Strahler, A. N., 1952: Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Amer., 63 , 11171142.

  • Vera, C., and Coauthors, 2006: A unified view of the American monsoon systems. J. Climate, 19 , 49775000.

  • Xie, P., , Y. Yarosh, , M. Chen, , R. Joyce, , J. E. Janowiak, , and P. A. Arkin, 2005: Diurnal cycle of cloud and precipitation associated with the North American monsoon system: Preliminary results for 2003 and 2004. Preprints, 16th Conf. on Climate Variability and Change, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 4.22.

  • Xu, J. J., , X. Gao, , J. Shuttleworth, , S. Sorooshian, , and E. Small, 2004a: Model climatology of the North American monsoon onset period during 1980–2001. J. Climate, 17 , 38923906.

    • Search Google Scholar
    • Export Citation
  • Xu, J. J., , W. J. Shuttleworth, , X. Gao, , S. Sorooshian, , and E. E. Small, 2004b: Soil moisture–precipitation feedback on the North American monsoon system in the MM5-OSU model. Quart. J. Roy. Meteor. Soc., 130 , 28732890.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., , D. P. Lettenmaier, , and T. Cavazos, 2005: Role of antecedent land surface conditions on North American monsoon rainfall variability. J. Climate, 18 , 31043121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 7
PDF Downloads 24 24 4

Variation of Hydrometeorological Conditions along a Topographic Transect in Northwestern Mexico during the North American Monsoon

View More View Less
  • 1 Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Instituto del Medio Ambiente y Desarrollo Sustentable del Estado de Sonora, Hermosillo, Sonora, Mexico
  • | 3 Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, Mexico
  • | 4 Department of Geological Sciences, University of South Carolina, Columbia, South Carolina
  • | 5 USDA/ARS/Hydrology and Remote Sensing Laboratory, Beltsville, Maryland
© Get Permissions
Restricted access

Abstract

Relatively little is currently known about the spatiotemporal variability of land surface conditions during the North American monsoon, in particular for regions of complex topography. As a result, the role played by land–atmosphere interactions in generating convective rainfall over steep terrain and sustaining monsoon conditions is still poorly understood. In this study, the variation of hydrometeorological conditions along a large-scale topographic transect in northwestern Mexico is described. The transect field experiment consisted of daily sampling at 30 sites selected to represent variations in elevation and ecosystem distribution. Simultaneous soil and atmospheric variables were measured during a 2-week period in early August 2004. Transect observations were supplemented by a network of continuous sampling sites used to analyze the regional hydrometeorological conditions prior to and during the field experiment. Results reveal the strong control exerted by topography on the spatial and temporal variability in soil moisture, with distinct landscape regions experiencing different hydrologic regimes. Reduced variations at the plot and transect scale during a drydown period indicate that homogenization of hydrologic conditions occurred over the landscape. Furthermore, atmospheric variables are clearly linked to surface conditions, indicating that heating and moistening of the boundary layer closely follow spatial and temporal changes in hydrologic properties. Land–atmosphere interactions at the basin scale (∼100 km2), obtained via a technique accounting for topographic variability, further reveal the role played by the land surface in sustaining high atmospheric moisture conditions, with implications toward rainfall generation during the North American monsoon.

Corresponding author address: Enrique R. Vivoni, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, MSEC 244, 801 Leroy Place, Socorro, NM 87801. Email: vivoni@nmt.edu

This article included in the North American Monsoon Experiment (NAME) special collection.

Abstract

Relatively little is currently known about the spatiotemporal variability of land surface conditions during the North American monsoon, in particular for regions of complex topography. As a result, the role played by land–atmosphere interactions in generating convective rainfall over steep terrain and sustaining monsoon conditions is still poorly understood. In this study, the variation of hydrometeorological conditions along a large-scale topographic transect in northwestern Mexico is described. The transect field experiment consisted of daily sampling at 30 sites selected to represent variations in elevation and ecosystem distribution. Simultaneous soil and atmospheric variables were measured during a 2-week period in early August 2004. Transect observations were supplemented by a network of continuous sampling sites used to analyze the regional hydrometeorological conditions prior to and during the field experiment. Results reveal the strong control exerted by topography on the spatial and temporal variability in soil moisture, with distinct landscape regions experiencing different hydrologic regimes. Reduced variations at the plot and transect scale during a drydown period indicate that homogenization of hydrologic conditions occurred over the landscape. Furthermore, atmospheric variables are clearly linked to surface conditions, indicating that heating and moistening of the boundary layer closely follow spatial and temporal changes in hydrologic properties. Land–atmosphere interactions at the basin scale (∼100 km2), obtained via a technique accounting for topographic variability, further reveal the role played by the land surface in sustaining high atmospheric moisture conditions, with implications toward rainfall generation during the North American monsoon.

Corresponding author address: Enrique R. Vivoni, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, MSEC 244, 801 Leroy Place, Socorro, NM 87801. Email: vivoni@nmt.edu

This article included in the North American Monsoon Experiment (NAME) special collection.

Save