• Barnett, T. P., and Coauthors, 1994: Forecasting global ENSO-related climate anomalies. Tellus, 46A , 381397.

  • Barnston, A. G., M. H. Glantz, and Y. He, 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80 , 217243.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., A. Kumar, L. Goddard, and M. P. Hoerling, 2005: Improving seasonal prediction practices through attribution of climate variability. Bull. Amer. Meteor. Soc., 86 , 5972.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rain: A CGCM study. J. Climate, 18 , 45144530.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., T. N. Palmer, and L. Ferranti, 1994: Predictability of seasonal atmospheric variations. J. Climate, 7 , 217237.

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228 , 10841087.

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321 , 827832.

  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269 , 16991702.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428 , 733736.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. van Gorder, 2003: Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30 .1399, doi:10.1029/2002GL016673.

    • Search Google Scholar
    • Export Citation
  • Cole, J. E., R. B. Dunbar, T. R. McClanahan, and N. A. Muthiga, 2000: Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science, 287 , 617619.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18 , 52245238.

  • Fedorov, A. V., S. L. Harper, S. G. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84 , 911919.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Ji, M., and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125 , 742753.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Leetmaa, and V. E. Kousky, 1996: Coupled model predictions of ENSO during the 1980s and the 1990s at the National Centers for Environmental Prediction. J. Climate, 9 , 31053120.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81 , 21072119.

    • Search Google Scholar
    • Export Citation
  • Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. von Storch, J-S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9 , 167179.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1986: The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc., 67 , 533534.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J-P. Boulanger, C. Menkes, P. Inness, P. Delecluse, and J. M. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23 , 601620.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., G. M. Wellington, and D. P. Schrag, 2000: Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science, 290 , 11451148.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., and T. Yamagata, 2001: Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106 , 2221122228.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30 .2250, doi:10.1029/2003GL018649.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005a: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005b: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18 , 44744497.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA version 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Note 11, 91 pp.

  • Marengo, J., L. M. Alves, and H. Camargo, 2005: Global climate predictability at seasonal to interannual time scales. GEWEX News, Vol. 15, No. 4, International GEWEX Project Office, Silver Spring, MD, 6–7.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30 .1480, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85 , 677695.

  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher, 2005: Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci., 33 , 163193.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Perigaud, C. M., and C. Cassou, 2000: Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño. Geophys. Res. Lett., 27 , 389392.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp.

  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125 , 809818.

  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Trenberth, K. E., and T. J. Hoar, 1996: The 1990–1995 El Niño-Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23 , 5760.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, 85 pp.

  • van Oldenborgh, G. J., M. A. Balmaseda, L. Ferranti, T. N. Stockdale, and D. L. T. Anderson, 2005: Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J. Climate, 18 , 32403249.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90 , 71297132.

  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the Western Equatorial Pacific. J. Geophys. Res., 108 .3128, doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. Moore, and R. Kleeman, 2005: The linear response of ENSO to the Madden–Julian oscillation. J. Climate, 18 , 24412459.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 738 374 29
PDF Downloads 471 272 25

Extended ENSO Predictions Using a Fully Coupled Ocean–Atmosphere Model

View More View Less
  • 1 Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan
  • | 2 LOCEAN/IPSL, Université Pierre et Marie Curie, Paris, France
  • | 3 Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan
  • | 4 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, and Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan
Restricted access

Abstract

Using a fully coupled global ocean–atmosphere general circulation model assimilating only sea surface temperature, the authors found for the first time that several El Niño–Southern Oscillation (ENSO) events over the past two decades can be predicted at lead times of up to 2 yr. The El Niño condition in the 1997/98 winter can be predicted to some extent up to about a 1½-yr lead but with a weak intensity and large phase delay in the prediction of the onset of this exceptionally strong event. This is attributed to the influence of active and intensive stochastic westerly wind bursts during late 1996 to mid-1997, which are generally unpredictable at seasonal time scales. The cold signals in the 1984/85 and 1999/2000 winters during the peak phases of the past two long-lasting La Niña events are predicted well up to a 2-yr lead. Amazingly, the mild El Niño–like event of 2002/03 is also predicted well up to a 2-yr lead, suggesting a link between the prolonged El Niño and the tropical Pacific decadal variability. Seasonal climate anomalies over vast parts of the globe during specific ENSO years are also realistically predicted up to a 2-yr lead for the first time.

Corresponding author address: Jing-Jia Luo, Frontier Research Center for Global Change, JAMSTEC, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: luo@jamstec.go.jp

Abstract

Using a fully coupled global ocean–atmosphere general circulation model assimilating only sea surface temperature, the authors found for the first time that several El Niño–Southern Oscillation (ENSO) events over the past two decades can be predicted at lead times of up to 2 yr. The El Niño condition in the 1997/98 winter can be predicted to some extent up to about a 1½-yr lead but with a weak intensity and large phase delay in the prediction of the onset of this exceptionally strong event. This is attributed to the influence of active and intensive stochastic westerly wind bursts during late 1996 to mid-1997, which are generally unpredictable at seasonal time scales. The cold signals in the 1984/85 and 1999/2000 winters during the peak phases of the past two long-lasting La Niña events are predicted well up to a 2-yr lead. Amazingly, the mild El Niño–like event of 2002/03 is also predicted well up to a 2-yr lead, suggesting a link between the prolonged El Niño and the tropical Pacific decadal variability. Seasonal climate anomalies over vast parts of the globe during specific ENSO years are also realistically predicted up to a 2-yr lead for the first time.

Corresponding author address: Jing-Jia Luo, Frontier Research Center for Global Change, JAMSTEC, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: luo@jamstec.go.jp

Save