• Bender, M., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Search Google Scholar
    • Export Citation
  • Bender, M., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98 , 2324523263.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107 .4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37 , 22282250.

    • Search Google Scholar
    • Export Citation
  • Boos, W., J. Scott, and K. Emanuel, 2004: Transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34 , 334341.

    • Search Google Scholar
    • Export Citation
  • Cione, J., and E. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131 , 17831796.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., R. Locarnini, H. Garcia, O. Brien, T. Boyer, C. Stephens, and J. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures. National Oceanographic Data Center, CD-ROM Documentation, 17 pp.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33 , 561579.

  • D’Asaro, E., and C. McNeil, 2007: Air-sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst., 66 , 92109.

    • Search Google Scholar
    • Export Citation
  • Elsner, J., A. Tsonis, and T. Jagger, 2006: High-frequency variability in hurricane power dissipation and its relationship to global temperature. Bull. Amer. Meteor. Soc., 87 , 763768.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1987: The dependence of hurricane intensity on climate. Nature, 326 , 483485.

  • Emanuel, K., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52 , 39603968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1999: Thermodynamic control of hurricane intensity. Nature, 401 , 665669.

  • Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128 , 11391152.

  • Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106 , D14. 1477114781.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31 , 75104.

  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K., 2007: Comment on “Sea-surface temperatures and tropical cyclones in the Atlantic basin” by Patrick J. Michaels, Paul C. Knappenberger, and Robert E. Davis. Geophys. Res. Lett., 34 .L06702, doi:10.1029/2006GL026942.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. D. Autels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61 , 843858.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C., 2004: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. 3rd ed. Springer-Verlag, 415 pp.

  • Goni, G., and J. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84 , 573580.

    • Search Google Scholar
    • Export Citation
  • Harrison, D., and M. Carson, 2007: Is the World Ocean warming? Upper-ocean temperature trends: 1950–2000. J. Phys. Oceanogr., 37 , 174187.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C., P. Agudelo, P. Webster, and J. Curry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312 , 9497.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., and R. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17 , 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., R. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14 , 24582468.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32 .L02604, doi:10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Lin, I-I., C-C. Wu, K. Emanuel, I-H. Lee, C-R. Wu, and I-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133 , 26352649.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Michaels, P., P. Knappenberger, and R. Davis, 2006: Sea-surface temperatures and tropical cyclones in the Atlantic basin. Geophys. Res. Lett., 33 .L09708, doi:10.1029/2006GL025757.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., 2002: Improved representation of upper-ocean dynamics and mixed layer depths in a model of the North Atlantic on switching from eddy-permitting to eddy-resolving grid resolution. J. Phys. Oceanogr., 32 , 22772298.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Price, J., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11 , 153175.

  • Schade, L., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57 , 31223130.

  • Schade, L., and K. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmospheric–ocean model. J. Atmos. Sci., 56 , 642651.

    • Search Google Scholar
    • Export Citation
  • Scott, J., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32 , 35783595.

    • Search Google Scholar
    • Export Citation
  • Shay, L., G. Goni, and P. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128 , 13661383.

  • Virmani, J., and R. Weisberg, 2006: The 2005 hurricane season: An echo of the past or a harbinger of the future? Geophys. Res. Lett., 33 .L05707, doi:10.1029/2005GL025517.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D-L. Zhang, 2006: The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci., 23 , 1422.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 183 9
PDF Downloads 292 194 4

Tropical Cyclones and Transient Upper-Ocean Warming

View More View Less
  • 1 Earth System Science Department, University of California, Irvine, Irvine, California
  • | 2 Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts
Restricted access

Abstract

Strong winds affect mixing and heat distribution in the upper ocean. In turn, upper-ocean heat content affects the evolution of tropical cyclones. Here the authors explore the global effects of the interplay between tropical cyclones and upper-ocean heat content. The modeling study suggests that, for given atmospheric thermodynamic conditions, regimes characterized by intense (with deep mixing and large upper-ocean heat content) and by weak (with shallow mixing and small heat content) tropical cyclone activity can be sustained. A global general circulation ocean model is used to study the transient evolution of a heat anomaly that develops following the strong mixing induced by the passage of a tropical cyclone. The results suggest that at least one-third of the anomaly remains in the tropical region for more than one year. A simple atmosphere–ocean model is then used to study the sensitivity of maximum wind speed in a cyclone to the oceanic vertical temperature profile. The feedback between cyclone activity and upper-ocean heat content amplifies the sensitivity of modeled cyclone power dissipation to atmospheric thermodynamic conditions.

Corresponding author address: Claudia Pasquero, Earth System Science Department, University of California, Irvine, Irvine, CA 92697-3100. Email: claudia.pasquero@uci.edu

Abstract

Strong winds affect mixing and heat distribution in the upper ocean. In turn, upper-ocean heat content affects the evolution of tropical cyclones. Here the authors explore the global effects of the interplay between tropical cyclones and upper-ocean heat content. The modeling study suggests that, for given atmospheric thermodynamic conditions, regimes characterized by intense (with deep mixing and large upper-ocean heat content) and by weak (with shallow mixing and small heat content) tropical cyclone activity can be sustained. A global general circulation ocean model is used to study the transient evolution of a heat anomaly that develops following the strong mixing induced by the passage of a tropical cyclone. The results suggest that at least one-third of the anomaly remains in the tropical region for more than one year. A simple atmosphere–ocean model is then used to study the sensitivity of maximum wind speed in a cyclone to the oceanic vertical temperature profile. The feedback between cyclone activity and upper-ocean heat content amplifies the sensitivity of modeled cyclone power dissipation to atmospheric thermodynamic conditions.

Corresponding author address: Claudia Pasquero, Earth System Science Department, University of California, Irvine, Irvine, CA 92697-3100. Email: claudia.pasquero@uci.edu

Save