Predictive Skill of AGCM Seasonal Climate Forecasts Subject to Different SST Prediction Methodologies

Shuhua Li International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Shuhua Li in
Current site
Google Scholar
PubMed
Close
,
Lisa Goddard International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Lisa Goddard in
Current site
Google Scholar
PubMed
Close
, and
David G. DeWitt International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by David G. DeWitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines skill of retrospective forecasts using the ECHAM4.5 atmospheric general circulation model (AGCM) forced with predicted sea surface temperatures (SSTs) from methods of varying complexity. The SST fields are predicted in three ways: persisted observed SST anomalies, empirically predicted SSTs, and predicted SSTs from a dynamically coupled ocean–atmosphere model. Investigation of relative skill of the three sets of retrospective forecasts focuses on the ensemble mean, which constitutes the portion of the model response attributable to the prescribed boundary conditions. The anomaly correlation skill analyses for precipitation and 2-m air temperature indicate that dynamically predicted SSTs generally improve upon persisted and empirically predicted SSTs when they are used as boundary forcing in the AGCM predictions. This is particularly the case for precipitation forecasts. The skill differences in these experiments are ascribed to the skill of SST predictions in the tropical ocean basins. The multiscenario forecast by averaging the three retrospective experiments performs, overall, as well as or better than the best of the three individual experiments in specific seasons and regions. The advantage of multiscenario forecast manifests both in the deterministic and probabilistic skill. In particular, the multiscenario precipitation forecast for the December–February season demonstrates better skill than the best of the three scenarios over several regions, such as the western United States and southeastern South America. These results suggest the potential value in producing superensembles spanning different SST prediction scenarios.

Corresponding author address: Dr. Shuhua Li, International Research Institute for Climate and Society, The Earth Institute at Columbia University, 61 Route 9W, Palisades, NY 10964-8000. Email: shuhua@iri.columbia.edu

Abstract

This study examines skill of retrospective forecasts using the ECHAM4.5 atmospheric general circulation model (AGCM) forced with predicted sea surface temperatures (SSTs) from methods of varying complexity. The SST fields are predicted in three ways: persisted observed SST anomalies, empirically predicted SSTs, and predicted SSTs from a dynamically coupled ocean–atmosphere model. Investigation of relative skill of the three sets of retrospective forecasts focuses on the ensemble mean, which constitutes the portion of the model response attributable to the prescribed boundary conditions. The anomaly correlation skill analyses for precipitation and 2-m air temperature indicate that dynamically predicted SSTs generally improve upon persisted and empirically predicted SSTs when they are used as boundary forcing in the AGCM predictions. This is particularly the case for precipitation forecasts. The skill differences in these experiments are ascribed to the skill of SST predictions in the tropical ocean basins. The multiscenario forecast by averaging the three retrospective experiments performs, overall, as well as or better than the best of the three individual experiments in specific seasons and regions. The advantage of multiscenario forecast manifests both in the deterministic and probabilistic skill. In particular, the multiscenario precipitation forecast for the December–February season demonstrates better skill than the best of the three scenarios over several regions, such as the western United States and southeastern South America. These results suggest the potential value in producing superensembles spanning different SST prediction scenarios.

Corresponding author address: Dr. Shuhua Li, International Research Institute for Climate and Society, The Earth Institute at Columbia University, 61 Route 9W, Palisades, NY 10964-8000. Email: shuhua@iri.columbia.edu

Save
  • Barnston, A. G., S. J. Mason, L. Goddard, D. G. DeWitt, and S. E. Zebiak, 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84 , 17831796.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific Basin. J. Climate, 15 , 34273442.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., S-I. Shin, and P. D. Sardeshmukh, 2006: Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dyn., 27 , 483492.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., U. Schelese, E. Roeckner, M. Latif, T. P. Barnett, and N. E. Graham, 1993: A two-tiered approach to long-range climate forecasting. Science, 261 , 10261029.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133 , 29722995.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and S. J. Mason, 2002: Sensitivity of seasonal climate forecasts to persisted SST anomalies. Climate Dyn., 19 , 619631.

  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity. J. Climate, 18 , 651665.

  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21 , 11111152.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. G. Barnston, and S. J. Mason, 2003: Evaluation of the IRI’s “Net Assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84 , 17611781.

    • Search Google Scholar
    • Export Citation
  • Guérémy, J-F., M. Déqué, A. Braun, and J-P. Piedeliévre, 2005: Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: Coupled versus uncoupled model. Tellus, 57A , 308319.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: Basic concept. Tellus, 57A , 219233.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120 , 755793.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132 , 27322744.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Tech. Rep. 218, 90 pp.

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 , 71837192.

  • Van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A , 314324.

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 58 0
PDF Downloads 108 29 1