Time Scales and Spatial Patterns of Passive Ocean–Atmosphere Decay Modes

Benjamin R. Lintner Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
and
J. David Neelin Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The decay characteristics of a mixed layer ocean passively coupled to an atmospheric model are important to the response of the climate system to stochastic or external forcing. Two salient features of such decay—the spatial-scale dependence of sea surface temperature anomaly (SSTA) decay time scales and the spatial inhomogeneities of SSTA decay modes—are addressed using intermediate-level complexity and simple analytic models of the tropical atmosphere. As expected, decay time scales increase with the spatial extent of the SSTA. Most modes decay rapidly—with characteristic decay times of 50–100 days for a 50-m mixed layer—with the decay determined by local surface flux adjustment. Only those modes with spatial scales approaching or larger than the tropical basin scale exhibit decay time scales distinctively longer than the local decay, with the decay time scale of the most slowly decaying mode of the order of 250–300 days in the tropics (500 days globally). Simple analytic prototypes of the spatial-scale dependence and the effect of basic-state inhomogeneities, especially the impact of nonconvecting regions, elucidate these results. Horizontal energy transport sets the transition between fast, essentially local, decay time scales and the slower decay at larger spatial scales; within the tropics, efficient wave dynamics accounts for the small number of slowly decaying modes. Inhomogeneities in the basic-state climate, such as the presence or absence of mean tropical deep convection, strongly impact large-scale SSTA decay characteristics. For nonconvecting regions, SSTA decay is slow because evaporation is limited by relatively slow moisture divergence. The separation of convecting- and nonconvecting-region decay times and the closeness of the slower nonconvecting-region decay time scale to the most slowly decaying modes cause a blending between local nonconvecting modes and the large-scale modes, resulting in pronounced spatial inhomogeneity in the slow decay modes.

Corresponding author address: Dr. Benjamin R. Lintner, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., 7127 Math Science Bldg., Los Angeles, CA 90095-1565. Email: ben@atmos.ucla.edu

Abstract

The decay characteristics of a mixed layer ocean passively coupled to an atmospheric model are important to the response of the climate system to stochastic or external forcing. Two salient features of such decay—the spatial-scale dependence of sea surface temperature anomaly (SSTA) decay time scales and the spatial inhomogeneities of SSTA decay modes—are addressed using intermediate-level complexity and simple analytic models of the tropical atmosphere. As expected, decay time scales increase with the spatial extent of the SSTA. Most modes decay rapidly—with characteristic decay times of 50–100 days for a 50-m mixed layer—with the decay determined by local surface flux adjustment. Only those modes with spatial scales approaching or larger than the tropical basin scale exhibit decay time scales distinctively longer than the local decay, with the decay time scale of the most slowly decaying mode of the order of 250–300 days in the tropics (500 days globally). Simple analytic prototypes of the spatial-scale dependence and the effect of basic-state inhomogeneities, especially the impact of nonconvecting regions, elucidate these results. Horizontal energy transport sets the transition between fast, essentially local, decay time scales and the slower decay at larger spatial scales; within the tropics, efficient wave dynamics accounts for the small number of slowly decaying modes. Inhomogeneities in the basic-state climate, such as the presence or absence of mean tropical deep convection, strongly impact large-scale SSTA decay characteristics. For nonconvecting regions, SSTA decay is slow because evaporation is limited by relatively slow moisture divergence. The separation of convecting- and nonconvecting-region decay times and the closeness of the slower nonconvecting-region decay time scale to the most slowly decaying modes cause a blending between local nonconvecting modes and the large-scale modes, resulting in pronounced spatial inhomogeneity in the slow decay modes.

Corresponding author address: Dr. Benjamin R. Lintner, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., 7127 Math Science Bldg., Los Angeles, CA 90095-1565. Email: ben@atmos.ucla.edu

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11 , 16151632.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1982: Ocean climate modeling. Prog. Oceanogr., 11 , 93129.

  • Cane, M. A., and S. E. Zebiak, 1986: On the mechanism of the El Niño-Southern Oscillation cycle. Study Week on Persistent Meteo-Oceanographic Anomalies and Teleconnections, C. Chagas and G. Puppi, Eds., Pontificia Academia Scientiarum, 6–96.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, H. Li, C. Penland, and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperature. Geophys. Res. Lett., 25 , 11931196.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18 , 41304149.

  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Chou, C., J. D. Neelin, J-Y. Tu, and C-T. Chen, 2006: Regional tropical precipitation change mechanisms in ECHAM4/OPYC3 under global warming. J. Climate, 19 , 42074223.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, 92 pp.

  • Elliott, J. R., S. P. Jewson, and R. T. Sutton, 2001: The impact of the 1997/98 El Niño event on the Atlantic Ocean. J. Climate, 14 , 10691077.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Gallego, B., and P. Cessi, 2001: Decadal variability of two oceans and an atmosphere. J. Climate, 14 , 28152832.

  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14 , 45304544.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Impact of explicit atmosphere–ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci., 63 , 22892306.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 1997: Forcings and chaos in interannual to decadal climate change. J. Geophys. Res., 102 , 2567925720.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 473485.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108 .3079, doi:10.1029/2000JC000736.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., J. D. Neelin, and N. Zeng, 2000: Maintenance of tropical intraseasonal variability: Impact of evaporation–wind feedback and midlatitude storms. J. Atmos. Sci., 57 , 27932823.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and D. W. Pierce, 1997: On spatial scales and lifetimes of SST anomalies beneath a diffusive atmosphere. J. Phys. Oceanogr., 27 , 133139.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21 , 18631898.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., M. Latif, S. Venzke, and E. Maier-Reimer, 1998: Decadal oscillations in a simple coupled model. J. Climate, 11 , 33093319.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18 , 39283950.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., 2000: Propagation, diffusion, and decay of SST anomalies beneath an advective atmosphere. J. Phys. Oceanogr., 30 , 15051513.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., 2001: Spatial reorganization of SST anomalies by stationary atmospheric waves. Dyn. Atmos. Oceans, 34 , 121.

  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18 , 45824599.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41 , 604613.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13 , 21772194.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., 1985: Modeling tropical sea-surface temperature: Implication of various atmospheric responses. Coupled Ocean-Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 727–734.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16 , 39783992.

  • Su, H., J. D. Neelin, and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16 , 12831301.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2005: Mechanisms for lagged atmospheric response to ENSO SST forcing. J. Climate, 18 , 41954215.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31 .L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Timlin, M. S., M. A. Alexander, and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15 , 27072712.

  • Watanabe, M., and M. Kimoto, 2000: On the persistence of decadal SST anomalies in the North Atlantic. J. Climate, 13 , 30173028.

  • Wu, Z-X., and R. E. Newell, 1998: Influence of sea surface temperatures on air temperatures in the tropics. Climate Dyn., 14 , 275290.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Q. Wang, 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27 , 573592.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 44 4
PDF Downloads 45 21 4