Response of Thermohaline Circulation to Freshwater Forcing under Present-Day and LGM Conditions

Aixue Hu Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
,
Bette L. Otto-Bliesner Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Bette L. Otto-Bliesner in
Current site
Google Scholar
PubMed
Close
,
Gerald A. Meehl Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Carrie Morrill NOAA/NCDC Paleoclimatology Program, and CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Carrie Morrill in
Current site
Google Scholar
PubMed
Close
,
Esther C. Brady Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Esther C. Brady in
Current site
Google Scholar
PubMed
Close
, and
Bruce Briegleb Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Bruce Briegleb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Responses of the thermohaline circulation (THC) to freshwater forcing (hosing) in the subpolar North Atlantic Ocean under present-day and the last glacial maximum (LGM) conditions are investigated using the National Center for Atmospheric Research Community Climate System Model versions 2 and 3. Three sets of simulations are analyzed, with each set including a control run and a freshwater hosing run. The first two sets are under present-day conditions with an open and closed Bering Strait. The third one is under LGM conditions, which has a closed Bering Strait. Results show that the THC nearly collapses in all three hosing runs when the freshwater forcing is turned on. The full recovery of the THC, however, is at least a century earlier in the open Bering Strait run than the closed Bering Strait and LGM runs. This is because the excessive freshwater is diverged almost equally toward north and south from the subpolar North Atlantic when the Bering Strait is open. A significant portion of the freshwater flowing northward into the Arctic exits into the North Pacific via a reversed Bering Strait Throughflow, which accelerates the THC recovery. When the Bering Strait is closed, this Arctic to Pacific transport is absent and freshwater can only be removed through the southern end of the North Atlantic. Together with the surface freshwater excess due to precipitation, evaporation, river runoff, and melting ice in the closed Bering Strait experiments after the hosing, the removal of the excessive freshwater takes longer, and this slows the recovery of the THC. Although the background conditions are quite different between the present-day closed Bering Strait run and the LGM run, the THC responds to the freshwater forcing added in the North Atlantic in a very similar manner.

Corresponding author address: Aixue Hu, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80021. Email: ahu@ucar.edu

Abstract

Responses of the thermohaline circulation (THC) to freshwater forcing (hosing) in the subpolar North Atlantic Ocean under present-day and the last glacial maximum (LGM) conditions are investigated using the National Center for Atmospheric Research Community Climate System Model versions 2 and 3. Three sets of simulations are analyzed, with each set including a control run and a freshwater hosing run. The first two sets are under present-day conditions with an open and closed Bering Strait. The third one is under LGM conditions, which has a closed Bering Strait. Results show that the THC nearly collapses in all three hosing runs when the freshwater forcing is turned on. The full recovery of the THC, however, is at least a century earlier in the open Bering Strait run than the closed Bering Strait and LGM runs. This is because the excessive freshwater is diverged almost equally toward north and south from the subpolar North Atlantic when the Bering Strait is open. A significant portion of the freshwater flowing northward into the Arctic exits into the North Pacific via a reversed Bering Strait Throughflow, which accelerates the THC recovery. When the Bering Strait is closed, this Arctic to Pacific transport is absent and freshwater can only be removed through the southern end of the North Atlantic. Together with the surface freshwater excess due to precipitation, evaporation, river runoff, and melting ice in the closed Bering Strait experiments after the hosing, the removal of the excessive freshwater takes longer, and this slows the recovery of the THC. Although the background conditions are quite different between the present-day closed Bering Strait run and the LGM run, the THC responds to the freshwater forcing added in the North Atlantic in a very similar manner.

Corresponding author address: Aixue Hu, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80021. Email: ahu@ucar.edu

Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94 , 1448514498.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362 , 527529.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., J. C. H. Chiang, W. Cheng, and J. J. Barsugli, 2007: Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys. Res. Lett., 34 .L07708, doi:10.1029/2006GL029237.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 .L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1998: Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13 , 119121.

  • Bryan, F. O., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323 , 301304.

  • Bryan, F. O., and W. R. Holland, 1989: A high resolution simulation of the wind- and thermohaline-driven circulation in the North Atlantic Ocean. Parameterization of Small-Scale Processes: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 99–115.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and A. C. Mix, 2000: Global change: Ice sheets by volume. Nature, 406 , 689690.

  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., A. M. McCabe, A. C. Mix, and A. J. Weaver, 2004: Rapid rise of sea level 19,000 years ago and its global implications. Science, 304 , 11411144.

    • Search Google Scholar
    • Export Citation
  • Clarke, G., D. Leverington, J. Teller, and A. Dyke, 2003: Superlakes, megafloods, and abrupt climate change. Science, 301 , 922923.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Dahl, K. A., A. J. Broccoli, and R. J. Stouffer, 2005: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dyn., 24 , 325346.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364 , 218220.

    • Search Google Scholar
    • Export Citation
  • De Boer, A. M., and D. Nof, 2004a: The exhaust valve of the North Atlantic. J. Climate, 17 , 417422.

  • De Boer, A. M., and D. Nof, 2004b: The Bering Strait’s grip on the Northern Hemisphere climate. Deep-Sea Res. I, 51 , 13471366.

  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., M. S. Kristensen, and K. K. Andersen, 2005: The recurrence time of Dansgaard–Oeschger events and limits on the possible periodic component. J. Climate, 18 , 25942603.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3 , 343360.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., J. M. Campin, T. Fichefet, and E. Deleersnijder, 1997: Sensitivity of a global ice–ocean model to the Bering Strait throughflow. Climate Dyn., 13 , 349358.

    • Search Google Scholar
    • Export Citation
  • Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, and J. Jouzel, 1993: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366 , 552554.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 2002: Sensitivity of the global thermohaline circulation to interbasin freshwater transport by the atmosphere and the Bering Strait throughflow. J. Climate, 15 , 25162526.

    • Search Google Scholar
    • Export Citation
  • Heinrich, H., 1988: Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29 , 142152.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., 2004: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 .RG1005, doi:10.1029/2003RG000128.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., G. C. Bond, W. S. Broecker, W. D. Sharp, and M. Klas-Mendelson, 2000: Evidence from 40Ar/39Ar ages of individual hornblende grains for varying Laurentide sources of iceberg discharges 22 000 to 10 500 yr B.P. Quat. Res., 54 , 372383.

    • Search Google Scholar
    • Export Citation
  • Hu, A., 2001: Changes in the Arctic and their impact on the oceanic meridional overturning circulation. Ph.D. dissertation, University of Miami, 171 pp.

  • Hu, A., and G. A. Meehl, 2005a: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32 .L24610, doi:10.1029/2005GL024424.

    • Search Google Scholar
    • Export Citation
  • Hu, A., and G. A. Meehl, 2005b: Reasons for a fresher northern North Atlantic in the late 20th Century. Geophys. Res. Lett., 32 .L11701, doi:10.1029/2005GL022900.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, and W. Han, 2004: Detecting thermohaline circulation changes from ocean properties in a coupled model. Geophys. Res. Lett., 31 .L13204, doi:10.1029/2004GL020218.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, and W. Han, 2007a: Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys. Res. Lett., 34 .L05704, doi:10.1029/2006GL028906.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, and W. Han, 2007b: Causes of a fresher, colder northern North Atlantic in late 20th century in a coupled model. Prog. Oceanogr., 73 , 384405.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and R. W. Schmitt, 1993: The Goldsbrough–Stommel circulation of the world oceans. J. Phys. Oceanogr., 23 , 12771284.

  • Hughes, T. M. C., and A. J. Weaver, 1994: Multiple equilibria of an asymmetric two-basin ocean model. J. Phys. Oceanogr., 24 , 619637.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version two. J. Climate, 17 , 36663682.

  • Krebs, U., and A. Timmermann, 2007: Fast advective recovery of the Atlantic meridional overturning circulation after a Heinrich event. Paleoceanography, 22 .PA1220, doi:10.1029/2005PA001259.

    • Search Google Scholar
    • Export Citation
  • Levermann, A., A. Griesel, M. Hofmann, M. Montoya, and S. Rahmstorf, 2005: Dynamic sea level changes following changes in the thermohaline circulation. Climate Dyn., 24 , 347354.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1 , 841866.

  • Marchitto Jr., T. M., D. W. Oppo, and W. B. Curry, 2002: Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic. Paleoceanography, 17 .1038, doi:10.1029/2000PA000598.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and L. D. Talley, 1984: Warm-to-cold water conversion in the northern North Atlantic Ocean. J. Phys. Oceangr, 14 , 922935.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J-M. Gherardi, L. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 , 834837.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., and E. Maier-Reimer, 1994: Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res., 99 , 2263322644.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19 , 25262544.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto Jr., E. C. Brady, A. Abe-Ouchi, M. Crucific, S. Murakami, and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34 .L12707, doi:10.1029/2007GL029475.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and A. T. Roach, 1987: On northward flow in the Bering and Chukchi seas. J. Geophys. Res., 92 , 70977105.

  • Peltier, W. R., and L. P. Solheim, 2004: The climate of the Earth at Last Glacial Maximum: Statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23 , 335357.

    • Search Google Scholar
    • Export Citation
  • Pflaumann, U., and Coauthors, 2003: Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceangraphy, 18 .1065, doi:10.1029/2002PA000774.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378 , 145149.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12 , 799811.

  • Rahmstorf, S., 2002: Ocean circulation and climate during the last 120,000 years. Nature, 419 , 207214.

  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32 .L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and S. B. Power, 1994: The influence of the Bering Strait on the circulation in a coarse resolution global ocean model. Climate Dyn., 9 , 363369.

    • Search Google Scholar
    • Export Citation
  • Roche, D., D. Paillard, and E. Cortijo, 2004: Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature, 432 , 379382.

    • Search Google Scholar
    • Export Citation
  • Sarnthein, M., and Coauthors, 1995: Variations in Atlantic surface ocean paleoceanography, 50°–80°N: A time-slice record of the last 30,000 years. Paleoceanography, 10 , 10631094.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., 2005: Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434 , 628633.

    • Search Google Scholar
    • Export Citation
  • Shaffer, G., and J. Bendtsen, 1994: Role of the Bering Strait in controlling North Atlantic ocean circulation and climate. Nature, 367 , 354357.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., and B. J. Haupt, 2003: Freshwater teleconnections and ocean thermohaline circulation. Geophys. Res. Lett., 30 .1329, doi:10.1029/2002GL016564.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., and B. J. Haupt, 2005: How to run a minimalist’s global ocean conveyor. Geophys. Res. Lett., 32 .L07610, doi:10.1029/2005GL022559.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., M. Sarnthein, K. Stattegger, R. Prien, and M. Weinelt, 1996: North Atlantic ocean circulation during the last glacial maximum and subsequent meltwater event: A numerical model. J. Geophys. Res., 101 , 1630516332.

    • Search Google Scholar
    • Export Citation
  • Sidall, M., E. J. Rohling, A. Almogi-Labin, Ch Hemleben, D. Meischner, I. Schmelzer, and D. A. Smeed, 2003: Sea-level fluctuations during the last glacial cycle. Nature, 423 , 853858.

    • Search Google Scholar
    • Export Citation
  • Smith, L. T., E. P. Chassignet, and R. Bleck, 2000: The impact of lateral boundary conditions and horizontal resolution on North Atlantic water mass transformations and pathways in an isopycnic coordinate ocean model. J. Phys. Oceanogr., 30 , 137159.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., 2002: North-south connections. Science, 297 , 18141815.

  • Stocker, T. F., and D. G. Wright, 1991: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351 , 729732.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224241.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., J. M. Gregory, T. C. Johns, R. A. Wood, and J. F. B. Mitchell, 2001: Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14 , 31023116.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S-I. An, U. Krebs, and H. Goosse, 2005a: ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18 , 31223139.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., U. Krebs, F. Justino, H. Goosse, and T. Ivanochko, 2005b: Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography, 20 .PA4008, doi:10.1029/2004PA001090.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., R. A. Wood, and J. M. Gregory, 2002: Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Climate, 15 , 764779.

    • Search Google Scholar
    • Export Citation
  • Wadley, M. R., and G. R. Bigg, 2002: Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: An ocean modelling study. Quart. J. Roy. Meteor. Soc., 128 , 21872203.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and T. M. C. Hughes, 1992: Stability and variability of the thermohaline circulation and its links to climate. Trends Phys. Oceanogr., 1 , 1570.

    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate Past, 3 , 5164.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22 , 155162.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., and K. Aagaard, 2005: Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys. Res. Lett., 32 .L02602, doi:10.1029/2004GL021747.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, Y., K. Lambeck, P. De Deckker, P. Johnston, and L. K. Fifield, 2000: Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 406 , 713716.

    • Search Google Scholar
    • Export Citation
  • Yu, E-F., R. Francois, and M. P. Bacon, 1996: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379 , 689694.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 695 215 33
PDF Downloads 412 116 8