Direct and Indirect Shortwave Radiative Effects of Sea Salt Aerosols

Tarek Ayash Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Tarek Ayash in
Current site
Google Scholar
PubMed
Close
,
Sunling Gong Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada

Search for other papers by Sunling Gong in
Current site
Google Scholar
PubMed
Close
, and
Charles Q. Jia Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Charles Q. Jia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea salt aerosols play a dual role in affecting the atmospheric radiative balance. Directly, sea salt particles scatter the incoming solar radiation and absorb the outgoing terrestrial radiation. By acting as cloud condensation nuclei, sea salt aerosols indirectly modulate the atmospheric radiative budget through their effective contribution to cloud formation. Using the Canadian Aerosol Module (CAM)–Canadian Centre for Climate Modelling and Analysis (CCCma) GCM, version 3 (GCM3) framework, the direct as well as the indirect shortwave (SW) radiative effects of sea salt aerosols are simulated. The model results herein suggest that sea salt aerosols exert a significant direct radiative effect over oceanic regions, with seasonal means in the range from −2 to −3 W m−2 over the Southern Ocean. Globally, sea salt’s SW indirect effect (annual mean −0.38 W m−2) is found to be less than its direct effect (annual mean −0.65 W m−2). However, sea salt’s indirect effect is found to be far stronger over the Southern Hemisphere than over the Northern Hemisphere, especially over the Southern Ocean with seasonal means around −4 W m−2, which exceed its direct effect. The model results herein suggest that sea salt aerosols significantly modulate the atmospheric radiation budget over oceanic regions and need to be accounted for in global climate models.

Corresponding author address: Tarek Ayash, Dept. of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada. Email: tarek.ayash@utoronto.ca

Abstract

Sea salt aerosols play a dual role in affecting the atmospheric radiative balance. Directly, sea salt particles scatter the incoming solar radiation and absorb the outgoing terrestrial radiation. By acting as cloud condensation nuclei, sea salt aerosols indirectly modulate the atmospheric radiative budget through their effective contribution to cloud formation. Using the Canadian Aerosol Module (CAM)–Canadian Centre for Climate Modelling and Analysis (CCCma) GCM, version 3 (GCM3) framework, the direct as well as the indirect shortwave (SW) radiative effects of sea salt aerosols are simulated. The model results herein suggest that sea salt aerosols exert a significant direct radiative effect over oceanic regions, with seasonal means in the range from −2 to −3 W m−2 over the Southern Ocean. Globally, sea salt’s SW indirect effect (annual mean −0.38 W m−2) is found to be less than its direct effect (annual mean −0.65 W m−2). However, sea salt’s indirect effect is found to be far stronger over the Southern Hemisphere than over the Northern Hemisphere, especially over the Southern Ocean with seasonal means around −4 W m−2, which exceed its direct effect. The model results herein suggest that sea salt aerosols significantly modulate the atmospheric radiation budget over oceanic regions and need to be accounted for in global climate models.

Corresponding author address: Tarek Ayash, Dept. of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada. Email: tarek.ayash@utoronto.ca

Save
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Ayash, T., 2007: Development of an interactive model for studying aerosol–climate interactions using the Canadian Aerosol Module–Canadian Climate Center General Circulation Model modeling framework. Ph.D. thesis, University of Toronto, 205 pp.

  • Ayash, T., S. L. Gong, and C. Q. Jia, 2008a: Implementing the delta-four-stream approximation for solar radiation computations in an atmosphere general circulation model. J. Atmos. Sci., 65 , 24482457.

    • Search Google Scholar
    • Export Citation
  • Ayash, T., S. L. Gong, C. Q. Jia, P. Huang, T. L. Zhao, and D. Lavoué, 2008b: Global modeling of multicomponent aerosol species: Aerosol optical parameters. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., E. Harrison, G. Smith, R. Green, J. Kibler, and R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70 , 12541262.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parametrization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Benkovitz, C. M., and S. E. Schwartz, 1997: Evaluation of modeled sulfate and SO2 over North America and Europe for four seasonal months in 1986–1987. J. Geophys. Res., 102 , 2530525338.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and G. L. Potter, 1987: Exploratory studies of cloud radiative forcing with a general circulation model. Tellus, 39A , 460473.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1997: Comparison of the seasonal change in cloud-radiative forcing from atmospheric general circulation models and satellite observations. J. Geophys. Res., 102 , 1659316603.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49 , 762772.

  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111 .D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104 , 2213722162.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., P. Koepke, and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Dobbie, S., J. Li, R. Harvey, and P. Chylek, 2003: Sea salt optical properties and GCM forcing at solar wavelengths. Atmos. Res., 65 , 211233.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., G. Guzman, and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55 , 33403347.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., and L. A. Barrie, 2003: Simulating the impact of sea salt on global nss sulphate aerosols. J. Geophys. Res., 108 .4516, doi:10.1029/2002JD003181.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., L. A. Barrie, and J-P. Blanchet, 1997: Modeling sea salt aerosols in the atmosphere. Part 1: Model development. J. Geophys. Res., 102 , 38053818.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., L. A. Barrie, and M. Lazare, 2002: Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. Part 2: Global sea salt aerosol and its budgets. J. Geophys. Res., 107 .4779, doi:10.1029/2001JD002004.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., and Coauthors, 2003: Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. Part 1: Module development. J. Geophys. Res., 108 .4007, doi:10.1029/2001JD002002.

    • Search Google Scholar
    • Export Citation
  • Grini, A., G. Myhre, J. K. Sundet, and I. S. A. Isaksen, 2002: Modeling the annual cycle of sea salt in the global 3D model Oslo CTM2: Concentrations, fluxes, and radiative impact. J. Climate, 15 , 17171730.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., V. Ramaswamy, and B. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283 , 12991303.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79 , 831844.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106 , 15511568.

    • Search Google Scholar
    • Export Citation
  • Jones, A., D. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370 , 450453.

    • Search Google Scholar
    • Export Citation
  • Kettle, A. J., and Coauthors, 1999: A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles, 13 , 399444.

    • Search Google Scholar
    • Export Citation
  • Kondratyev, K. Y., L. S. Ivlev, V. F. Krapivin, and C. A. Varotsos, 2006: Atmospheric Aerosol Properties: Formation, Processes and Impacts. Springer-Verlag, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., 2002: Studies of the aerosol indirect effect from sulfate and black carbon aerosols. J. Geophys. Res., 107 .4246, doi:10.1029/2001JD000887.

    • Search Google Scholar
    • Export Citation
  • LaPrise, R., and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3 , 3252.

    • Search Google Scholar
    • Export Citation
  • Lavoué, D., C. Liousse, H. Cachier, B. J. Stocks, and J. G. Goldammer, 2000: Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophys. Res., 105 , 2687126890.

    • Search Google Scholar
    • Export Citation
  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier, 1996: A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res., 101 , 1941119432.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12 , 557572.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. M. Vogelmann, 2004: Longwave aerosol direct and indirect radiative effects at the NSA site. Proc. 14th ARM Science Team Meeting, Albuquerque, NM, ARM, 1–5.

  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle. Part 1: Design of a soil-derived dust emission scheme. J. Geophys. Res., 100 , 1641516430.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • Monahan, E., D. Spiel, and K. Davidson, 1986: Model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps and Their Role in Air–Sea Exchange Processes, E. C. Monahan and G. Mac Niocaill, Eds., D. Reidel, 167–174.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, M. H. Smith, and A. D. Kaye, 1999: The relative importance of NSS-sulphate and sea salt aerosol to the marine CCN population: An improved multi-component aerosol-cloud droplet parametrization. Quart. J. Roy. Meteor. Soc., 125 , 12951313.

    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., and P. J. Adams, 2006: Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res., 111 .D06203, doi:10.1029/2005JD006186.

    • Search Google Scholar
    • Export Citation
  • Podgorny, I., and V. Ramanathan, 2003: Aerosol-cloud radiative interactions in the longwave domain. Geophysical Research Abstracts, Vol. 5, Abstract 01797. [Available online at http://www.cosis.net/abstracts/EAE03/01797/EAE03-J-01797.pdf.].

    • Search Google Scholar
    • Export Citation
  • Quinn, P., V. Kapustin, T. Bates, and D. Covert, 1996: Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res., 101 , 69316951.

    • Search Google Scholar
    • Export Citation
  • Quinn, P., and Coauthors, 2000: A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments. Tellus, 52B , 239257.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky, 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297 , 16671670.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S., and D. Lubin, 2003: Short wave versus long wave radiative forcing by Indian Ocean aerosols: Role of sea-surface winds. Geophys. Res. Lett., 30 .1695, doi:10.1029/2003GL017499.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15 , 333352.

    • Search Google Scholar
    • Export Citation
  • Textor, C., and Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6 , 17771813.

    • Search Google Scholar
    • Export Citation
  • Twomey, S. A., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentrations. Geofis. Pure Appl., 43 , 227242.

    • Search Google Scholar
    • Export Citation
  • Vinoj, V., and S. Satheesh, 2004: Direct and indirect radiative effects of sea salt aerosols over Arabian Sea. Curr. Sci., 86 , 13811390.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 , 73737382.

  • Yu, H., and Coauthors, 2005: A review of measurement-based assessment of aerosol direct radiative effect and forcing. Atmos. Chem. Phys. Discuss., 5 , 76477768.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 636 273 60
PDF Downloads 360 130 3