Absorbing Aerosols and Summer Monsoon Evolution over South Asia: An Observational Portrayal

Massimo Bollasina Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Massimo Bollasina in
Current site
Google Scholar
PubMed
Close
,
Sumant Nigam Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Sumant Nigam in
Current site
Google Scholar
PubMed
Close
, and
K-M. Lau Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by K-M. Lau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The South Asian haze builds up from December to May, is mostly of anthropogenic origin, and absorbs part of the solar radiation. The influence of interannual variations of absorbing aerosols over the Indo-Gangetic Plain in May on the Indian summer monsoon is characterized by means of an observational analysis. Insight into how the aerosol impact is generated is also provided.

It is shown that anomalous aerosol loading in late spring leads to remarkable and large-scale variations in the monsoon evolution. Excessive aerosols in May lead to reduced cloud amount and precipitation, increased surface shortwave radiation, and land surface warming. The June (and July) monsoon anomaly associated with excessive May aerosols is of opposite sign over much of the subcontinent (although with a different pattern) with respect to May. The monsoon strengthens in June (and July).

The analysis suggests that the significant large-scale aerosol influence on monsoon circulation and hydroclimate is mediated by the heating of the land surface, pursuant to reduced cloudiness and precipitation in May. The finding of the significant role of the land surface in the realization of the aerosol impact is somewhat novel.

Corresponding author address: Massimo Bollasina, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 3417 Computer and Space Science Building, College Park, MD 20742-2425. Email: massimo@atmos.umd.edu

Abstract

The South Asian haze builds up from December to May, is mostly of anthropogenic origin, and absorbs part of the solar radiation. The influence of interannual variations of absorbing aerosols over the Indo-Gangetic Plain in May on the Indian summer monsoon is characterized by means of an observational analysis. Insight into how the aerosol impact is generated is also provided.

It is shown that anomalous aerosol loading in late spring leads to remarkable and large-scale variations in the monsoon evolution. Excessive aerosols in May lead to reduced cloud amount and precipitation, increased surface shortwave radiation, and land surface warming. The June (and July) monsoon anomaly associated with excessive May aerosols is of opposite sign over much of the subcontinent (although with a different pattern) with respect to May. The monsoon strengthens in June (and July).

The analysis suggests that the significant large-scale aerosol influence on monsoon circulation and hydroclimate is mediated by the heating of the land surface, pursuant to reduced cloudiness and precipitation in May. The finding of the significant role of the land surface in the realization of the aerosol impact is somewhat novel.

Corresponding author address: Massimo Bollasina, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 3417 Computer and Space Science Building, College Park, MD 20742-2425. Email: massimo@atmos.umd.edu

Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfeld, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288 , 1042–1047.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 1147–1167.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., R. J. Charlson, S. E. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, 2003: Climate forcing by aerosols—A hazy picture. Science, 300 , 1103–1104.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2006: South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20 , 1071–1092.

    • Search Google Scholar
    • Export Citation
  • Cakmur, R. V., R. L. Miller, and I. Tegen, 2001: A comparison of seasonal and interannual variability of soil dust aerosols over the Atlantic Ocean as inferred by the TOMS AI and AVHRR AOT retrievals. J. Geophys. Res., 106 , D16. 18287–18304.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and S. Nigam, 2008: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Chiapello, I., J. M. Prospero, J. R. Herman, and N. C. Hsu, 1999: Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS. J. Geophys. Res., 104 , 9277–9291.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and S. Nigam, 1999: Asian summer monsoon—ENSO feedback on the Cane–Zebiak model ENSO. J. Climate, 12 , 2787–2807.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and V. Ramanathan, 2003: South Asian haze forcing: Remote impacts with implications to ENSO and AO. J. Climate, 16 , 1791–1806.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and V. Ramanathan, 2006: Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19 , 2036–2045.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramanathan, and J. T. Kiehl, 2002: Effects of the South Asian absorbing haze on the northeast monsoon and surface–air heat exchange. J. Climate, 15 , 2462–2476.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramanathan, D. Kim, and I. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110 .D24207, doi:10.1029/2005JD006356.

    • Search Google Scholar
    • Export Citation
  • Dey, S., S. N. Tripathi, and R. P. Singh, 2004: Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J. Geophys. Res., 109 .D20211, doi:10.1029/2004JD004924.

    • Search Google Scholar
    • Export Citation
  • Dugam, S. S., S. B. Kakade, and R. K. Verma, 1997: Interannual and long-term variability in the North Atlantic Oscillation and Indian summer monsoon rainfall. Theor. Appl. Climatol., 58 , 21–29.

    • Search Google Scholar
    • Export Citation
  • Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan, 2003: Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res., 108 .4100, doi:10.1029/2002JD002378.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, I. Slutsker, J. M. Lobert, and V. Ramanathan, 2001: Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000. J. Geophys. Res., 106 , 28555–28566.

    • Search Google Scholar
    • Export Citation
  • Gautam, R., N. C. Hsu, M. Kafatos, and S-C. Tsay, 2007: Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res., 112 .D05207, doi:10.1029/2005JD007036.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse Jr., 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12 , 2691–2710.

    • Search Google Scholar
    • Export Citation
  • Habib, G., C. Venkataraman, I. Chiapello, S. Ramachandran, O. Boucher, and M. S. Reddy, 2006: Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: Relationship to regional meteorology and emissions. Atmos. Environ., 40 , 1909–1921.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , 6831–6864.

  • Herman, J. R., P. B. Bhartia, O. Torres, C. Hsu, C. J. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res., 102 , 16911–16921.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., H. H. Hsu, I. N. James, M. Masutani, P. D. Sardeshmukh, and G. H. White, 1989: Diagnostics of the global atmospheric circulation based on ECMWF analyses 1979–1989. WCRP-27, WMO Tech. Doc. 326, 217 pp.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., and Coauthors, 1999: Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J. Geophys. Res., 104 , D6. 6269–6280.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., J. R. Herman, and S. C. Tsay, 2003: Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia. Geophys. Res. Lett., 30 .1224, doi:10.1029/2002GL016485.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: Synthesis Report. Core Writing Team, R. K. Pachauri, and A. Reisinger, Eds., IPCC, 104 pp.

  • Kaufman, Y. J., and I. Koren, 2006: Smoke and pollution aerosol effect on cloud cover. Science, 313 , 655–658.

  • Kiss, P., I. M. Jánosi, and O. Torres, 2007: Early calibration problems detected in TOMS Earth–Probe aerosol signal. Geophys. Res. Lett., 34 .L07803, doi:10.1029/2006GL028108.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and K-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33 .L21810, doi:10.1029/2006GL027546.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., M. K. Kim, and K-M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26 , 855–864.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and Coauthors, 2001: The Indian Ocean experiment: Widespread air pollution from South and Southeast Asia. Science, 291 , 1031–1036.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. L. Hartmann, 1982: Interannual variations of outgoing IR associated with tropical circulation changes during 1974–78. J. Atmos. Sci., 39 , 1153–1162.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 1275–1277.

    • Search Google Scholar
    • Export Citation
  • Massie, S. T., O. Torres, and S. J. Smith, 2004: Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J. Geophys. Res., 109 .D18211, doi:10.1029/2004JD004620.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21 , 2869–2882.

    • Search Google Scholar
    • Export Citation
  • Menon, S., 2004: Current uncertainties in assessing aerosol effects on climate. Annu. Rev. Environ. Resour., 29 , 1–30.

  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297 , 2250–2253.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693–712.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 2217–2238.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 1750–1771.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40 .1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Rajeev, K., and V. Ramanathan, 2002: The Indian Ocean experiment: Aerosol forcing obtained from satellite data. Adv. Space Res., 29 , 1731–1740.

    • Search Google Scholar
    • Export Citation
  • Rajeev, K., V. Ramanathan, and J. Meywerk, 2000: Regional aerosol distribution and its long-range transport over the Indian Ocean. J. Geophys. Res., 105 , D2. 2029–2044.

    • Search Google Scholar
    • Export Citation
  • Ramana, M. V., V. Ramanathan, I. A. Podgorny, B. B. Pradhan, and B. Shrestha, 2004: The direct observations of large aerosol radiative forcing in the Himalayan region. Geophys. Res. Lett., 31 .L05111, doi:10.1029/2003GL018824.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and M. V. Ramana, 2005: Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys., 162 , 1609–1626.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2001: Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106 , D22. 28371–28398.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102 , 5326–5333.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO Tech. Doc. 737, 115 pp.

  • Sarkar, S., R. Chokngamwong, G. Cervone, R. P. Singh, and M. Kafatos, 2006: Variability of aerosol optical depth and aerosol forcing over India. Adv. Space Res., 37 , 2153–2159.

    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res., 103 , 17099–17110.

    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci., 59 , 398–413.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 2961–3012.

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , 14451–14510.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 2539–2558.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 663 223 44
PDF Downloads 443 112 10