Observed and Simulated Upper-Tropospheric Water Vapor Feedback

A. Gettelman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by A. Gettelman in
Current site
Google Scholar
PubMed
Close
and
Q. Fu University of Washington, Seattle, Washington

Search for other papers by Q. Fu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite measurements from the Atmospheric Infrared Sounder (AIRS) in the upper troposphere over 4.5 yr are used to assess the covariation of upper-tropospheric humidity and temperature with surface temperatures, which can be used to constrain the upper-tropospheric moistening due to the water vapor feedback. Results are compared to simulations from a general circulation model, the NCAR Community Atmosphere Model (CAM), to see if the model can reproduce the variations. Results indicate that the upper troposphere maintains nearly constant relative humidity for observed perturbations to ocean surface temperatures over the observed period, with increases in temperature ∼1.5 times the changes at the surface, and corresponding increases in water vapor (specific humidity) of 10%–25% °C−1. Increases in water vapor are largest at pressures below 400 hPa, but they have a double peak structure. Simulations reproduce these changes quantitatively and qualitatively. Agreement is best when the model is sorted for satellite sampling thresholds. This indicates that the model reproduces the moistening associated with the observed upper-tropospheric water vapor feedback. The results are not qualitatively sensitive to model resolution or model physics.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. Email: andrew@ucar.edu

Abstract

Satellite measurements from the Atmospheric Infrared Sounder (AIRS) in the upper troposphere over 4.5 yr are used to assess the covariation of upper-tropospheric humidity and temperature with surface temperatures, which can be used to constrain the upper-tropospheric moistening due to the water vapor feedback. Results are compared to simulations from a general circulation model, the NCAR Community Atmosphere Model (CAM), to see if the model can reproduce the variations. Results indicate that the upper troposphere maintains nearly constant relative humidity for observed perturbations to ocean surface temperatures over the observed period, with increases in temperature ∼1.5 times the changes at the surface, and corresponding increases in water vapor (specific humidity) of 10%–25% °C−1. Increases in water vapor are largest at pressures below 400 hPa, but they have a double peak structure. Simulations reproduce these changes quantitatively and qualitatively. Agreement is best when the model is sorted for satellite sampling thresholds. This indicates that the model reproduces the moistening associated with the observed upper-tropospheric water vapor feedback. The results are not qualitatively sensitive to model resolution or model physics.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. Email: andrew@ucar.edu

Save
  • Blankenship, C. B., and T. T. Wilheit, 2001: SSM/T-2 measurements of regional changes in three-dimensional water vapor fields during ENSO events. J. Geophys. Res., 106 , D6. 52395254.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15 , 29072920.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 2005: Water vapor feedback in climate models. Science, 310 , 795796.

  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud–climate feedback as produced by 14 atmospheric general circulation models. Science, 245 , 513516.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111 .D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, Vol. 57, Chapman and Hall, 436 pp.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and D. E. Kinnison, 2007: The global impact of supersaturation in a coupled chemistry–climate model. Atmos. Chem. Phys., 7 , 16291643.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. F. Forster, M. Fujiwara, Q. Fu, H. Vömel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109 .D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., W. D. Collins, E. J. Fetzer, F. W. Irion, A. Eldering, P. B. Duffy, and G. Bala, 2006a: Climatology of upper-tropospheric relative humidity from the atmospheric infrared sounder and implications for climate. J. Climate, 19 , 61046121.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006b: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111 .D09S13, doi:10.1029/2005JD006636.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model (CAM3). Part II: Single-column and global results. J. Climate, 21 , 38633882.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29 .1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71 , 288299.

  • Minschwaner, K., and A. E. Dessler, 2004: Water vapor feedback in the tropical upper troposphere: Model results and observations. J. Climate, 17 , 12721282.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model (CAM3). Part I: Description and numerical tests. J. Climate, 21 , 38453862.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model formulation. J. Atmos. Sci., 57 , 17411766.

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309 , 15511556. doi:10.1126/science.1114867.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296 , 727730. doi:10.1126/science.296.5568.727.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310 , 841844. doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., and A. H. Oort, 1995: Humidity–temperature relationships in the tropical troposphere. J. Climate, 8 , 19741987.

  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Remote Sens., 41 , 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, J. M. Blaisdell, L. Iredell, F. Keita, L. Kouvaris, G. Molnar, and M. Chahine, 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res., 111 .D09S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 168 3
PDF Downloads 164 51 0