Evolution of the Deep and Bottom Waters of the Scotia Sea, Southern Ocean, during 1995–2005

Michael P. Meredith British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Michael P. Meredith in
Current site
Google Scholar
PubMed
Close
,
Alberto C. Naveira Garabato National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Alberto C. Naveira Garabato in
Current site
Google Scholar
PubMed
Close
,
Arnold L. Gordon Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Arnold L. Gordon in
Current site
Google Scholar
PubMed
Close
, and
Gregory C. Johnson NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Gregory C. Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Southern Ocean hosts the formation of the densest layers of the oceanic overturning circulation and provides a climatically sensitive element of deep ocean ventilation. An oceanographic section across the eastern Scotia Sea occupied in 1995, 1999, and 2005 reveals significant variability in the deep and bottom waters of Southern Ocean origin. Warming (∼0.1°C) of the warm midlayer waters in the Scotia Sea between 1995 and 1999 reversed through to 2005, reflecting changes seen earlier upstream in the Weddell Sea. The volume of deep waters with potential temperature less than 0°C decreased during 1995–2005, though such a reduction was only clear between 1995 and 1999 at the southern end of the section. The abyssal waters of the eastern Scotia Sea changed circulation between 1995 and 1999, with the dominant point of their entry to the basin shifting from the south to the northeast; by 2005, the former route had regained dominance. These changes are best explained by interannual variations in the deep waters exiting the Weddell Sea, superimposed on a longer-term (decadal) warming trend. The interannual variations are related to changes in the strength of the Weddell Gyre, reflecting large-scale atmospheric variability that may include the El Niño–Southern Oscillation phenomenon. The Scotia Sea is the most direct pathway for dense waters of the overturning circulation emanating from the Weddell Sea to fill much of the World Ocean abyss. The regional changes reported here have the potential to affect the climatically significant ventilation of the global ocean abyss.

* Pacific Marine Environmental Laboratory Contribution Number 3106 and Lamont-Doherty Earth Observatory Contribution Number 7103

Corresponding author address: Michael P. Meredith, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. Email: mmm@bas.ac.uk

Abstract

The Southern Ocean hosts the formation of the densest layers of the oceanic overturning circulation and provides a climatically sensitive element of deep ocean ventilation. An oceanographic section across the eastern Scotia Sea occupied in 1995, 1999, and 2005 reveals significant variability in the deep and bottom waters of Southern Ocean origin. Warming (∼0.1°C) of the warm midlayer waters in the Scotia Sea between 1995 and 1999 reversed through to 2005, reflecting changes seen earlier upstream in the Weddell Sea. The volume of deep waters with potential temperature less than 0°C decreased during 1995–2005, though such a reduction was only clear between 1995 and 1999 at the southern end of the section. The abyssal waters of the eastern Scotia Sea changed circulation between 1995 and 1999, with the dominant point of their entry to the basin shifting from the south to the northeast; by 2005, the former route had regained dominance. These changes are best explained by interannual variations in the deep waters exiting the Weddell Sea, superimposed on a longer-term (decadal) warming trend. The interannual variations are related to changes in the strength of the Weddell Gyre, reflecting large-scale atmospheric variability that may include the El Niño–Southern Oscillation phenomenon. The Scotia Sea is the most direct pathway for dense waters of the overturning circulation emanating from the Weddell Sea to fill much of the World Ocean abyss. The regional changes reported here have the potential to affect the climatically significant ventilation of the global ocean abyss.

* Pacific Marine Environmental Laboratory Contribution Number 3106 and Lamont-Doherty Earth Observatory Contribution Number 7103

Corresponding author address: Michael P. Meredith, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. Email: mmm@bas.ac.uk

Save
  • Andrié, C., Y. Gouriou, B. Bourlès, J-F. Ternon, E. S. Braga, P. Morin, and C. Oudot, 2003: Variability of AABW properties in the equatorial channel at 35°W. Geophys. Res. Lett., 30 .8007, doi:10.1029/2002GL015766.

    • Search Google Scholar
    • Export Citation
  • Arhan, M., K. J. Heywood, and B. A. King, 1999: The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res., 46 , 475499.

    • Search Google Scholar
    • Export Citation
  • Coles, V. J., M. S. McCartney, D. B. Olson, and W. M. Smethie, 1996: Changes in the Antarctic Bottom Water properties in the western South Atlantic in the late 1980s. J. Geophys. Res., 101 , 89578970.

    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., M. Hoppema, G. Rohardt, M. Schröder, and A. Wisotzki, 2004: Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54 , 7791.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res., 23 , 301317.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20 , 111140.

  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295 , 12751277.

  • Gordon, A. L., 1966: Potential temperature, oxygen and circulation of bottom water in the Southern Ocean. Deep-Sea Res., 13 , 11251138.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1998: Western Weddell Sea thermohaline stratification. Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Amer. Geophys. Union, 215–240.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., M. Visbeck, and B. Huber, 2001: Export of Weddell Sea Deep and Bottom Water. J. Geophys. Res., 106 , C5. 90059017.

  • Gordon, A. L., M. Visbeck, and J. Comiso, 2007: A possible link between the Weddell Polynya and the Southern Annular Mode. J. Climate, 20 , 25582571.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308 , 14311435.

  • Heywood, K. J., and B. A. King, 2002: Water masses and baroclinic transports in the South Atlantic and Southern oceans. J. Mar. Res., 60 , 639676.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, and D. P. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415 , 10111014.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Johnson, G. C., and S. C. Doney, 2006: Recent western South Atlantic bottom water warming. Geophys. Res. Lett., 33 .L14614, doi:10.1029/2006GL026769.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. Mecking, B. M. Sloyan, and S. E. Wijffels, 2007: Recent bottom water warming in the Pacific Ocean. J. Climate, 20 , 53655375.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., T. Whitworth, and W. D. Nowlin, 1993: The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water. J. Mar. Res., 51 , 135153.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and R. A. Iannuzzi, 2003: Spatial/temporal patterns in Weddell gyre characteristics and their relationship to global climate. J. Geophys. Res., 108 .8083, doi:10.1029/2000JC000538.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., R. A. Locarnini, K. A. Van Scoy, A. J. Watson, K. J. Heywood, and B. A. King, 2000: On the sources of Weddell Gyre Antarctic Bottom Water. J. Geophys. Res., 105 , C1. 10931104.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2001: Deep and Bottom Waters of the Eastern Scotia Sea: Rapid changes in properties and circulation. J. Phys. Oceanogr., 31 , 21572168.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. J. Heywood, and D. P. Stevens, 2002a: Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea. Deep-Sea Res. I, 49 , 681705.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., E. L. McDonagh, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2002b: On the export of Antarctic Bottom Water from the Weddell Sea. Deep-Sea Res. II, 49 , 47154742.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33 , 25652587.

    • Search Google Scholar
    • Export Citation
  • Nowlin Jr., W. D., and W. Zenk, 1988: Westward bottom currents along the margin of the South Shetland Island Arc. Deep-Sea Res., 35 , 269301.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. D. Nowlin, and T. Whitworth, 1993: On the circulation and stratification of the Weddell Gyre. Deep-Sea Res. I, 40 , 169203.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., M. Visbeck, A. L. Gordon, and E. Fahrbach, 2002: Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Res. II, 49 , 47914806.

    • Search Google Scholar
    • Export Citation
  • Sievers, H. A., and W. D. Nowlin, 1984: The stratification and water masses at Drake Passage. J. Geophys. Res., 89 , C6. 1048910514.

  • Smedsrud, L. H., 2005: Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977–2001. Deep-Sea Res. I, 52 , 241258.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., A. Gordon, B. Smethic, P. Schlosser, J. Toole, B. Huber, and G. Krahmann, 2001: The CORC/ARCHES observing system for Weddell Sea Deep and Bottom Water variability. CLIVAR Exchanges, Vol. 6, No. 4, International CLIVAR Project Office, Southampton, United Kingdom, 23–25.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., W. D. Nowlin, A. H. Orsi, R. A. Locarnini, and S. G. Smith, 1994: Weddell Sea shelf water in the Bransfield Strait and Weddell–Scotia Confluence. Deep-Sea Res. I, 41 , 629641.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., and E. Morozov, 2007: Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel. Geophys. Res. Lett., 34 .L14607, doi:10.1029/2007GL030340.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1062 556 13
PDF Downloads 355 140 7