The Low-Frequency Relationship of the Tropical–North Pacific Sea Surface Temperature Teleconnections

Sang-Wook Yeh Korea Ocean Research and Development Institute, Ansan, South Korea

Search for other papers by Sang-Wook Yeh in
Current site
Google Scholar
PubMed
Close
and
Ben P. Kirtman Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The low-frequency relationship between interannual tropical and North Pacific sea surface temperature anomalies (SSTAs) in observations and a coupled general circulation model (CGCM) is investigated. The authors use the interactive ensemble CGCM, which advances a new approach for artificially increasing the signal-to-noise ratio, making it easier to detect physical and dynamical links with much reduced interference by atmospheric noise. The results presented here suggest that decadal variations in the relationship between the dominant modes of tropical and North Pacific interannual SSTA variability result from changes of spatial manifestation of North Pacific SSTA, both in the observation and in the model.

The authors conjecture that the details of tropical Pacific SST forcing ultimately determine the tropical–North Pacific SST teleconnections, and this conjecture is examined in a much longer time series from a CGCM simulation. There are two patterns of North Pacific interannual SSTA variability in the model. The first pattern is locally forced by noise in the surface air–sea fluxes associated due to internal atmospheric dynamics. The second pattern is remotely forced by tropical SSTA. As the relationship of tropical–North Pacific SST teleconnections varies in the model, the spatial manifestation of the North Pacific SSTA changes from the atmospheric noise-forced pattern to the remotely forced pattern and vice versa. In the model, the amplitude of the tropical Pacific SSTA variance varies on decadal time scales and this largely determines the dominant structure of North Pacific SSTA variability. Furthermore, the change in location of the maximum tropical SST forcing is associated with the changes in the spatial manifestation of North Pacific interannual SSTA variability.

Corresponding author address: Dr. Sang-Wook Yeh, Korea Ocean Research and Development Institute, P.O. Box 29, Ansan, 425-600, South Korea. Email: swyeh@kordi.re.kr

Abstract

The low-frequency relationship between interannual tropical and North Pacific sea surface temperature anomalies (SSTAs) in observations and a coupled general circulation model (CGCM) is investigated. The authors use the interactive ensemble CGCM, which advances a new approach for artificially increasing the signal-to-noise ratio, making it easier to detect physical and dynamical links with much reduced interference by atmospheric noise. The results presented here suggest that decadal variations in the relationship between the dominant modes of tropical and North Pacific interannual SSTA variability result from changes of spatial manifestation of North Pacific SSTA, both in the observation and in the model.

The authors conjecture that the details of tropical Pacific SST forcing ultimately determine the tropical–North Pacific SST teleconnections, and this conjecture is examined in a much longer time series from a CGCM simulation. There are two patterns of North Pacific interannual SSTA variability in the model. The first pattern is locally forced by noise in the surface air–sea fluxes associated due to internal atmospheric dynamics. The second pattern is remotely forced by tropical SSTA. As the relationship of tropical–North Pacific SST teleconnections varies in the model, the spatial manifestation of the North Pacific SSTA changes from the atmospheric noise-forced pattern to the remotely forced pattern and vice versa. In the model, the amplitude of the tropical Pacific SSTA variance varies on decadal time scales and this largely determines the dominant structure of North Pacific SSTA variability. Furthermore, the change in location of the maximum tropical SST forcing is associated with the changes in the spatial manifestation of North Pacific interannual SSTA variability.

Corresponding author address: Dr. Sang-Wook Yeh, Korea Ocean Research and Development Institute, P.O. Box 29, Ansan, 425-600, South Korea. Email: swyeh@kordi.re.kr

Save
  • Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5 , 944958.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific Basin. J. Climate, 15 , 34273442.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., M. Ghil, and J. C. McWilliams, 2000: Pacific interdecadal variability in this century’s sea surface temperatures. Geophys. Res. Lett., 27 , 22612264.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkage between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2002: Linearity in ENSO’s atmospheric response. J. Climate, 15 , 24462461.

  • Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10 , 135162.

    • Search Google Scholar
    • Export Citation
  • Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 473485.

  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15 , 21842203.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J. Phys. Oceanogr., 24 , 707715.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model. Volume I: Formation. COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Kirtman, B. P., and S. Zebiak, 1997: ENSO simulation and prediction with a hybrid coupled model. Mon. Wea. Rev., 125 , 26202641.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 .1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., K. Pegion, and S. M. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62 , 22202233.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Q. Zhang, P. Peng, and B. Jha, 2005: SST-forced atmospheric variability in an atmospheric general circulation model. J. Climate, 18 , 39533967.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , C7. 1437514393.

  • Lau, K-M., J-Y. Lee, K-M. Kim, and I-S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17 , 819833.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78 , 2133.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of the “Atmospheric Bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lee, E-J., J-G. Jhun, and I-S. Kang, 2002: The characteristic variability of boreal wintertime atmospheric circulation in El Niño events. J. Climate, 15 , 892904.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20 , 23332356.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., K. Dixon, and A. Rosati, 1993: The GFDL Modular Ocean Model User’s Guide. GFDL Ocean Group Tech Rep. 2, 77 pp. [Available from GFDL/NOAA, Princeton University, Princeton, NJ 08542.].

  • Pan, Y. H., and A. H. Oort, 1983: Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–73 period. Mon. Wea. Rev., 111 , 12441258.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Pierce, D. W., T. P. Barnett, and M. Latif, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Quan, X. W., P. J. Webster, A. M. Moore, and H. R. Chang, 2004: Seasonality in SST-forced atmospheric short-term climate predictability. J. Climate, 17 , 30903108.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18 , 16011626.

  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13 , 42684286.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15 , 23402358.

  • Sura, P., M. Newman, C. Penland, and P. D. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62 , 13911409.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28 , 39233926.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., A. R. Navato, and R. E. Newell, 1976: Empirical orthogonal analysis of Pacific sea surface temperatures. J. Phys. Oceanogr., 6 , 671678.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129 , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25 , 155170.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J. Climate, 19 , 43784396.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19 , 49144932.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2003: On the relationship between the interannual and decadal SST variability in the North Pacific and tropical Pacific Ocean. J. Geophys. Res., 108 .4344, doi:10.1029/2002JD002817.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004a: The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn., 22 , 721732.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004b: The North Pacific Oscillation–ENSO and internal atmospheric variability. Geophys. Res. Lett., 31 .L13206, doi:10.1029/2004GL019983.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004c: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109 .C11009, doi:10.1029/2004JC002442.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., B. P. Kirtman, and S-I. An, 2007: Local versus non-local atmospheric weather noise and the North Pacific SST variability. Geophys. Res. Lett., 34 .L14706, doi:10.1029/2007GL030206.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

  • Zhang, Y., J. R. Norris, and J. M. Wallace, 1998: Seasonality of large-scale atmosphere–ocean interaction over the North Pacific. J. Climate, 11 , 24732481.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 45 3
PDF Downloads 68 23 0