The Influence of Atmospheric Noise and Uncertainty in Ocean Initial Conditions on the Limit of Predictability in a Coupled GCM

Cristiana Stan Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
and
Ben P. Kirtman George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of atmospheric stochastic forcing and uncertainty in initial conditions on the limit of predictability of the NCEP Climate Forecast System (CFS) is quantified based on comparisons of idealized identical twin prediction experiments using two different coupling strategies. In the first method, called the interactive ensemble, a single oceanic general circulation model (GCM; the Modular Ocean Model version 3 of GFDL) is coupled to the ensemble average of multiple realizations (in this case six ensemble members) of an atmospheric GCM (NCEP Global Forecast System). In the second method the standard CFS is used. The interactive ensemble is specifically designed to reduce the internal atmospheric dynamic fluctuations that are unrelated to the sea surface temperature anomalies via ensemble averaging at the air–sea interface, whereas in the standard CFS, the atmospheric noise (i.e., stochastic forcing) plays an active role in the evolution of the coupled system. In the identical twin experiments presented here, the perfect model approach is taken, thereby explicitly excluding the impact of model error on the estimate of the limit of predictability. The experimental design and the analysis separately consider how uncertainty in the ocean initial conditions (i.e., initial condition noise) versus uncertainty as the forecast evolves (i.e., noise due to internal dynamics of the atmosphere) impact estimates of the limit of predictability. Estimates of the limit of predictability are based on both deterministic measures (ensemble spread and root-mean-square error) and probabilistic measures (relative operating characteristics). The analysis examines both oceanic and atmospheric variables in the tropical Pacific. The overarching result is that noise in the initial condition is the primary factor limiting predictability, whereas noise as the forecast evolves is of secondary importance.

Corresponding author address: Cristiana Stan, Center for Ocean–Land–Atmosphere Studies, Suite 302, Calverton, MD 20705-3106. Email: stan@cola.iges.org

Abstract

The influence of atmospheric stochastic forcing and uncertainty in initial conditions on the limit of predictability of the NCEP Climate Forecast System (CFS) is quantified based on comparisons of idealized identical twin prediction experiments using two different coupling strategies. In the first method, called the interactive ensemble, a single oceanic general circulation model (GCM; the Modular Ocean Model version 3 of GFDL) is coupled to the ensemble average of multiple realizations (in this case six ensemble members) of an atmospheric GCM (NCEP Global Forecast System). In the second method the standard CFS is used. The interactive ensemble is specifically designed to reduce the internal atmospheric dynamic fluctuations that are unrelated to the sea surface temperature anomalies via ensemble averaging at the air–sea interface, whereas in the standard CFS, the atmospheric noise (i.e., stochastic forcing) plays an active role in the evolution of the coupled system. In the identical twin experiments presented here, the perfect model approach is taken, thereby explicitly excluding the impact of model error on the estimate of the limit of predictability. The experimental design and the analysis separately consider how uncertainty in the ocean initial conditions (i.e., initial condition noise) versus uncertainty as the forecast evolves (i.e., noise due to internal dynamics of the atmosphere) impact estimates of the limit of predictability. Estimates of the limit of predictability are based on both deterministic measures (ensemble spread and root-mean-square error) and probabilistic measures (relative operating characteristics). The analysis examines both oceanic and atmospheric variables in the tropical Pacific. The overarching result is that noise in the initial condition is the primary factor limiting predictability, whereas noise as the forecast evolves is of secondary importance.

Corresponding author address: Cristiana Stan, Center for Ocean–Land–Atmosphere Studies, Suite 302, Calverton, MD 20705-3106. Email: stan@cola.iges.org

Save
  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. C. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation: Frequency entrainment and chaos in an intermediate coupled ocean–atmosphere model. Geophys. Res. Lett., 21 , 28172820.

    • Search Google Scholar
    • Export Citation
  • Chen, Y. Q., D. S. Battisti, T. N. Palmer, J. Barsugli, and E. S. Sarachik, 1997: A study of the predictability of tropical pacific SST in a coupled atmosphere–ocean model using singular vector analysis: The role of the annual cycle and the ENSO cycle. Mon. Wea. Rev., 125 , 831845.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49 , 762772.

  • Chou, M. D., and K. T. Lee, 1996: Parameterization for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53 , 12041208.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, Vol. 15, NASA Goddard Space Flight Center Tech. Memo. NASA/TM-1999-104606, 40 pp.

  • Flügel, M., and P. Chang, 1996: Impact of dynamical and stochastic processes on the predictability of ENSO. Geophys. Res. Lett., 23 , 20892092.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Global Climate and Weather Modeling Branch, Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Office Note 442, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.].

  • Goswami, B. N., and J. Shukla, 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4 , 222.

  • Hong, S-Y., and H-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126 , 25992620.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F. F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 1991: Recent changes implemented into the global forecast system at NMC. Wea. Forecasting, 6 , 425435.

  • Kanamitsu, M., W. Ebisuzaki, J. Wollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using mesoscale gravity wave model. J. Atmos. Sci., 52 , 18751902.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131 , 23242341.

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 .1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., K. Pegion, and S. M. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62 , 22202233.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and S. Power, 1994: Limit of predictability in a coupled ocean–atmosphere model due to atmospheric noise. Tellus, 46A , 529540.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54 , 753767.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., Y. Tang, and A. M. Moore, 2003: The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J. Atmos. Sci., 60 , 28562868.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14 , 713725.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999a: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12 , 29652982.

  • Moore, A. M., and R. Kleeman, 1999b: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Moorthi, S., H-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis forecast system. National Weather Service Office of Meteorology Tech. Procedures Bulletin 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.htm.].

  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations in a tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Orell, D., L. Smith, J. Barkmeijer, and T. Palmer, 2001: Model error in weather forecasting. Nonlinear Processes Geophys., 8 , 357371.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 638 pp.

  • Pegion, K., and B. P. Kirtman, 2007: Internal atmospheric dynamics and air-sea interactions in the tropical intraseasonal oscillation. COLA Tech. Rep. 247, 20 pp. [Available online at ftp://grads.iges.org/pub/ctr/ctr_247.pdf.].

  • Penland, C., and L. Matrasova, 1994: A balance condition for stochastic numerical models with application to the El Niño-Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11551158.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Schneider, E. K., D. Dewitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131 , 30383060.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. M. Griffies, 1999: A conceptual framework for predictability studies. J. Climate, 12 , 31333155.

  • Shukla, J., 1998: Predictability in the middle of chaos: A scientific basis for climate forecast. Science, 282 , 728731.

  • Smagorinski, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32 .L14703, doi:10.1029/2005GL022760.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasiperiodicity route to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • Wang, B., A. Barcilon, and Z. Fang, 1999: Stochastic dynamics of El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 523.

  • Wang, B., Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32 .L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J. Climate, 19 , 43784396.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19 , 49144932.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xue, Y-K., M. A. Cane, and S. E. Zebiak, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125 , 20432056.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: On the 30–60 day oscillation and the prediction of El Niño. J. Climate, 2 , 13811387.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 78 6
PDF Downloads 168 39 2