The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM

Sarah M. Kang Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Sarah M. Kang in
Current site
Google Scholar
PubMed
Close
,
Isaac M. Held NOAA/Geophysical Fluid Dynamical Laboratory, Princeton, New Jersey

Search for other papers by Isaac M. Held in
Current site
Google Scholar
PubMed
Close
,
Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
, and
Ming Zhao Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical–tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical–tropical interactions in atmospheric models.

Corresponding author address: Sarah Kang, Princeton University, Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540. Email: skang@princeton.edu

Abstract

Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical–tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical–tropical interactions in atmospheric models.

Corresponding author address: Sarah Kang, Princeton University, Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540. Email: skang@princeton.edu

Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 .L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , D8. 1279112794.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high-latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25 , 477496.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 , 25482566.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Zhao, and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64 , 228238.

    • Search Google Scholar
    • Export Citation
  • Koutavas, A., and J. Lynch-Stieglitz, 2004: Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. The Hadley Circulation: Present, Past, and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 347–369.

    • Search Google Scholar
    • Export Citation
  • Lea, D. W., D. K. Pak, L. C. Peterson, and K. A. Hughen, 2003: Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science, 301 , 13611364.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., M. J. Suarez, I-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for the atmospheric general circulation models. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1 , 101107.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9 , 29582972.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17 , 36613665.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60-day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 2004: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past, and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 121–152.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. J. Hack, J. T. Kiehl, and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99 , 55255537.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4274 1066 84
PDF Downloads 2699 902 74