On Estimates of Historical North Atlantic Tropical Cyclone Activity

Gabriel A. Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
and
Thomas R. Knutson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas R. Knutson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, an estimate of the expected number of Atlantic tropical cyclones (TCs) that were missed by the observing system in the presatellite era (between 1878 and 1965) is developed. The significance of trends in both number and duration since 1878 is assessed and these results are related to estimated changes in sea surface temperature (SST) over the “main development region” (“MDR”). The sensitivity of the estimate of missed TCs to underlying assumptions is examined. According to the base case adjustment used in this study, the annual number of TCs has exhibited multidecadal variability that has strongly covaried with multidecadal variations in MDR SST, as has been noted previously. However, the linear trend in TC counts (1878–2006) is notably smaller than the linear trend in MDR SST, when both time series are normalized to have the same variance in their 5-yr running mean series. Using the base case adjustment for missed TCs leads to an 1878–2006 trend in the number of TCs that is weakly positive, though not statistically significant, with p ∼ 0.2. The estimated trend for 1900–2006 is highly significant (+∼4.2 storms century−1) according to the results of this study. The 1900–2006 trend is strongly influenced by a minimum in 1910–30, perhaps artificially enhancing significance, whereas the 1878–2006 trend depends critically on high values in the late 1800s, where uncertainties are larger than during the 1900s. The trend in average TC duration (1878–2006) is negative and highly significant. Thus, the evidence for a significant increase in Atlantic storm activity over the most recent 125 yr is mixed, even though MDR SST has warmed significantly. The decreasing duration result is unexpected and merits additional exploration; duration statistics are more uncertain than those of storm counts. As TC formation, development, and track depend on a number of environmental factors, of which regional SST is only one, much work remains to be done to clarify the relationship between anthropogenic climate warming, the large-scale tropical environment, and Atlantic TC activity.

Corresponding author address: Dr. Gabriel A. Vecchi, NOAA/Geophysical Fluid Dynamics Laboratory, Forrestal Campus, U.S. Rte. 1, Princeton, NJ 08542. Email: gabriel.a.vecchi@noaa.gov

Abstract

In this study, an estimate of the expected number of Atlantic tropical cyclones (TCs) that were missed by the observing system in the presatellite era (between 1878 and 1965) is developed. The significance of trends in both number and duration since 1878 is assessed and these results are related to estimated changes in sea surface temperature (SST) over the “main development region” (“MDR”). The sensitivity of the estimate of missed TCs to underlying assumptions is examined. According to the base case adjustment used in this study, the annual number of TCs has exhibited multidecadal variability that has strongly covaried with multidecadal variations in MDR SST, as has been noted previously. However, the linear trend in TC counts (1878–2006) is notably smaller than the linear trend in MDR SST, when both time series are normalized to have the same variance in their 5-yr running mean series. Using the base case adjustment for missed TCs leads to an 1878–2006 trend in the number of TCs that is weakly positive, though not statistically significant, with p ∼ 0.2. The estimated trend for 1900–2006 is highly significant (+∼4.2 storms century−1) according to the results of this study. The 1900–2006 trend is strongly influenced by a minimum in 1910–30, perhaps artificially enhancing significance, whereas the 1878–2006 trend depends critically on high values in the late 1800s, where uncertainties are larger than during the 1900s. The trend in average TC duration (1878–2006) is negative and highly significant. Thus, the evidence for a significant increase in Atlantic storm activity over the most recent 125 yr is mixed, even though MDR SST has warmed significantly. The decreasing duration result is unexpected and merits additional exploration; duration statistics are more uncertain than those of storm counts. As TC formation, development, and track depend on a number of environmental factors, of which regional SST is only one, much work remains to be done to clarify the relationship between anthropogenic climate warming, the large-scale tropical environment, and Atlantic TC activity.

Corresponding author address: Dr. Gabriel A. Vecchi, NOAA/Geophysical Fluid Dynamics Laboratory, Forrestal Campus, U.S. Rte. 1, Princeton, NJ 08542. Email: gabriel.a.vecchi@noaa.gov

Save
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate. Tellus, 59A , 539561.

    • Search Google Scholar
    • Export Citation
  • Cardone, V. J., J. Greenwood, and M. A. Cane, 1990: On trends in historical marine wind data. J. Climate, 3 , 10511054.

  • Chang, E. K. M., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett., 34 .L14801, doi:10.1029/2007GL030169.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688. doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20 , 54975509.

  • Emanuel, K. A., R. Sundarajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89 , 347367.

    • Search Google Scholar
    • Export Citation
  • Fernández-Partagás, J., and H. F. Diaz, 1996: Atlantic hurricanes in the second half of the nineteenth century. Bull. Amer. Meteor. Soc., 77 , 28992906.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 2007: Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos, Trans. Amer. Geophys. Union, 88 , 36. 349350.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci., 365A , 26952716.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.].

  • Kaplan, A., and Coauthors, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17 , 35553575.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17 , 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19 , 16241651.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88 , 15491565.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geosci., 1 , 359364.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., R. A. Pielke Jr., A. M. Mestas-Nuñez, and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42 , 89129.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2005: Meteorology: Hurricanes and global warming. Nature, 438 , E11E12. doi:10.1038/nature04477.

  • Landsea, C., 2007: Counting Atlantic tropical cyclones back in time. Eos, Trans. Amer. Geophys. Union, 88 , 18. 197203.

  • Landsea, C. W., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21 , 21382168.

  • Mann, M. E., and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87 , 233241.

  • Mann, M. E., T. A. Sabbatelli, and U. Neu, 2007: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34 .L22707, doi:10.1029/2007GL031781.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84 , 259276.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis region. Proc. Natl. Acad. Sci. USA, 103 , 1390513910. doi:10.1073/pnas.0602861103.

    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13 , 109121.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Solow, A. R., and L. J. Moore, 2002: Testing for trend in North Atlantic hurricane activity, 1900–98. J. Climate, 15 , 31113114.

  • Stouffer, R., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19 , 723740.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9 .doi:10.1029/2007GC001844.

  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 , 10661070. doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 .L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89 , 9. 8183.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34 .L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H-R. Chang, 2005: Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier Academic Press, 627 pp.

  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lot, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33 .L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3982 1188 74
PDF Downloads 1670 523 41