• Ackerman, S. A., and S. K. Cox, 1981: GATE phase III mean synoptic-scale radiative convergence profiles. Mon. Wea. Rev., 109 , 371383.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. IGARSS’97, Singapore, IEEE, 1633–1635.

  • Awaka, J., T. Iguchi, and K. Okamoto, 2007: Rain type classification algorithm. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 213–224.

    • Search Google Scholar
    • Export Citation
  • Berg, W., C. Kummerow, and C. Morales, 2002: Differences between east and west Pacific rainfall systems. J. Climate, 15 , 36593672.

  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39 , 14841505.

  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Duynkerke, P. G., 1989: The diurnal variation of a marine stratocumulus layer: A model sensitivity study. Mon. Wea. Rev., 117 , 17101725.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and P. Hignett, 1993: Simulation of diurnal variation in a stratocumulus-capped marine boundary layer during FIRE. Mon. Wea. Rev., 121 , 32913300.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14 , 14661478.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55 , 15371557.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory of tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 584604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Foltz, G. S., and W. M. Gray, 1979: Diurnal variations in the troposphere’s energy balance. J. Atmos. Sci., 36 , 14501466.

  • Geerts, B., and Y. Dawei, 2004: Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part I: Classification. J. Appl. Meteor., 43 , 15541566.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 11711188.

  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM “Day-1” radar/radiometer combined rain-profile algorithm. J. Meteor. Soc. Japan, 75 , 799809.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., J. P. Meagher, R. F. Adler, E. A. Smith, E. Im, and S. L. Durden, 2004: El Niño and the variability of global precipitation. J. Geophys. Res., 109 .D17103, doi:10.1029/2004JD004607.

    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams, 2002: Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130 , 14931509.

    • Search Google Scholar
    • Export Citation
  • Hann, J., 1901: Lehrbuch der Meteorologie. 1st ed. Tachnitz Leipzig, Germany, 805 pp.

  • Hirose, M., and K. Nakamura, 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110 .DO5106, doi:10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteor., 38 , 11951213.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 427461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox. Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11 , 15071511.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116 , 14441472.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20 , 546551.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81 , 12611270.

    • Search Google Scholar
    • Export Citation
  • Lavoie, R. L., 1963: Some aspects of meteorology of the tropical Pacific viewed from an atoll. Institute of Geophysics Rep. 27, University of Hawaii, 76 pp.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41 , 272285.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, and A. Lima, 2002: Diurnal march of the convection observed during TRMM-WETAMC/LBA. J. Geophys. Res., 107 .8064, doi:10.1029/2001JD000338.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, N. Dessay, and I. Miranda, 2004: Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol., 78 , 6177.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Gray, 1980: Mass divergence in tropical weather systems. Part I: Diurnal variation. Quart. J. Roy. Meteor. Soc., 106 , 501516.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and T. Kozu, 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • NASA Goddard Space Flight Center, 2007: File Specifications for TRMM products level 2 and level 3 (release 6.07). Vol. 4. Tropical Rainfall Measuring Mission (TRMM) Science Data and Information System (TSDIS), NASA Goddard Space Flight Center TSDIS documents. [Available online at http://tsdis.gsfc.nasa.gov/tsdis/tsdis_redesign/SelectedDocs.html.].

  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19 , 13331344.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainty estimates. J. Appl. Meteor., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate, 15 , 12781294.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, 295 pp.

  • Randall, D. A., and D. A. Dazlich, and Harshvardhan, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Ruprecht, E., and W. M. Gray, 1976: Analysis of satellite-observed cloud clusters: Papers I and II. Tellus, 28 , 391425.

  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44 , 26402656.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the Tropics as seen by the TRMM Precipitation Radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13 , 41074124.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA/COARE IFA. Bull. Amer. Meteor. Soc., 78 , 28172836.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W-K. Tao, and R. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., J. Turk, M. Farrar, A. Mugnai, and X. Xiang, 1997: Estimating 13.8-GHz path-integrated attenuation from 10.7-GHz brightness temperatures for TRMM combined PR–TMI precipitation algorithm. J. Appl. Meteor., 36 , 365388.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55 , 14831536.

  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 611–654.

    • Search Google Scholar
    • Export Citation
  • Smith, W. S., and C-Y. J. Kao, 1996: Numerical simulations of the marine stratocumulus-capped boundary layer and its diurnal variation. Mon. Wea. Rev., 124 , 18031816.

    • Search Google Scholar
    • Export Citation
  • Song, X., and Coauthors, 2004: Underestimated tropical stratiform precipitation in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Geophys. Res. Lett., 31 .L24101, doi:10.1029/2004GL021292.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., K-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54 , 639655.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., K-M. Lau, and X. Li, 1998: Convective–radiative interaction in simulated diurnal variations of tropical cumulus ensemble. J. Atmos. Sci., 55 , 23452357.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Retrieving vertical profiles of latent heat release in TOGA COARE convective systems using a cloud resolving model, SSM/I and radar data. J. Meteor. Soc. Japan, 78 , 333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM satellite measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

    • Search Google Scholar
    • Export Citation
  • Tremblay, A., 2005: The stratiform and convective components of surface precipitation. J. Atmos. Sci., 62 , 15131528.

  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variations of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., and Coauthors, 1994: Algorithms for the retrieval of rainfall from passive microwave measurements. Remote Sens. Rev., 11 , 163194.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. I. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and H. M. Woolf, 2002: The diurnal cycle of upper-tropospheric clouds measured by GOES-VAS and the ISCCP. Mon. Wea. Rev., 130 , 171179.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Yang, S., and E. A. Smith, 1999a: Four-dimensional structure of monthly latent heating derived from SSM/I satellite measurements. J. Climate, 12 , 10161037.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999b: Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J. Atmos. Oceanic Technol., 16 , 633655.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2000: Vertical structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite–sounding analysis. J. Appl. Meteor., 39 , 14911513.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19 , 51905226.

    • Search Google Scholar
    • Export Citation
  • Yang, S., W. Olson, J. J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2006a: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor., 45 , 721739.

    • Search Google Scholar
    • Export Citation
  • Yang, S., E. A. Smith, and K-S. Kuo, 2006b: Diurnal variability of precipitation from TRMM measurements. Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions, T. N. Krishnamurti, B. N. Goswami, and T. Iwasaki, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6404), doi:10.1117/12.696275.

    • Search Google Scholar
    • Export Citation
  • Yang, S., E. A. Smith, and K-S. Kuo, 2008: Persistent nature of secondary diurnal modes over oceanic and continental regimes. J. Climate, 21 , 41154131.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44 , 385415.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 39
PDF Downloads 10 10 10

Convective–Stratiform Precipitation Variability at Seasonal Scale from 8 Yr of TRMM Observations: Implications for Multiple Modes of Diurnal Variability

View More View Less
  • 1 Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, Virginia, and Laboratory for Atmospheres, NASA GSFC, Greenbelt, Maryland
  • | 2 Laboratory for Atmospheres, NASA GSFC, Greenbelt, Maryland
Restricted access

Abstract

This study investigates the variability of convective and stratiform rainfall from 8 yr (1998–2005) of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI) measurements, focusing on seasonal diurnal variability. The main scientific goals are 1) to understand the climatological variability of these two dominant forms of precipitation across the four cardinal seasons and over continents and oceans separately and 2) to understand how differences in convective and stratiform rainfall variations ultimately determine how the diurnal variability of the total rainfall is modulated into multiple modes.

There are distinct day–night differences for both convective and stratiform rainfall. Oceanic (continental) convective rainfall is up to 25% (50%) greater during nighttime (daytime) than daytime (nighttime). The seasonal variability of convective rainfall’s day–night difference is relatively small, while stratiform rainfall exhibits very apparent day–night variations with seasonal variability. There are consistent late evening diurnal peaks without obvious seasonal variations over ocean for convective, stratiform, and total rainfall. Over continents, convective and total rainfall exhibit consistent dominant afternoon peaks with little seasonal variations—but with late evening secondary peaks exhibiting seasonal variations. Stratiform rainfall over continents exhibits a consistent strong late evening peak and a weak afternoon peak, with the afternoon mode undergoing seasonal variability. Thus, the diurnal characteristics of stratiform rainfall appear to control the afternoon secondary maximum of oceanic rainfall and the late evening secondary peak of continental rainfall. Even at the seasonal–regional scale spatially or the interannual global scale temporally, the secondary mode can become very pronounced, but only on an intermittent basis. Overall, the results presented here demonstrate the importance of partitioning the total rainfall into convective and stratiform components and suggest that diurnal modes largely arise from distinct diurnal stratiform variations modulating convective variations.

* Current affiliation: I. M. Systems Group and NOAA/NESDIS/Center for Satellite Applications and Research (STAR), Camp Springs, Maryland

Corresponding author address: Dr. Song Yang, Laboratory for Atmospheres, Code 613.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: ysong@agnes.gsfc.nasa.gov

This article included in the Understanding Diurnal Variability of Precipitation through Observations and Models (UDVPOM) special collection.

Abstract

This study investigates the variability of convective and stratiform rainfall from 8 yr (1998–2005) of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI) measurements, focusing on seasonal diurnal variability. The main scientific goals are 1) to understand the climatological variability of these two dominant forms of precipitation across the four cardinal seasons and over continents and oceans separately and 2) to understand how differences in convective and stratiform rainfall variations ultimately determine how the diurnal variability of the total rainfall is modulated into multiple modes.

There are distinct day–night differences for both convective and stratiform rainfall. Oceanic (continental) convective rainfall is up to 25% (50%) greater during nighttime (daytime) than daytime (nighttime). The seasonal variability of convective rainfall’s day–night difference is relatively small, while stratiform rainfall exhibits very apparent day–night variations with seasonal variability. There are consistent late evening diurnal peaks without obvious seasonal variations over ocean for convective, stratiform, and total rainfall. Over continents, convective and total rainfall exhibit consistent dominant afternoon peaks with little seasonal variations—but with late evening secondary peaks exhibiting seasonal variations. Stratiform rainfall over continents exhibits a consistent strong late evening peak and a weak afternoon peak, with the afternoon mode undergoing seasonal variability. Thus, the diurnal characteristics of stratiform rainfall appear to control the afternoon secondary maximum of oceanic rainfall and the late evening secondary peak of continental rainfall. Even at the seasonal–regional scale spatially or the interannual global scale temporally, the secondary mode can become very pronounced, but only on an intermittent basis. Overall, the results presented here demonstrate the importance of partitioning the total rainfall into convective and stratiform components and suggest that diurnal modes largely arise from distinct diurnal stratiform variations modulating convective variations.

* Current affiliation: I. M. Systems Group and NOAA/NESDIS/Center for Satellite Applications and Research (STAR), Camp Springs, Maryland

Corresponding author address: Dr. Song Yang, Laboratory for Atmospheres, Code 613.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: ysong@agnes.gsfc.nasa.gov

This article included in the Understanding Diurnal Variability of Precipitation through Observations and Models (UDVPOM) special collection.

Save