• Bergman, J. W., and M. L. Salby, 1997: The role of cloud diurnal variations in the time-mean energy budget. J. Climate, 10 , 11141124.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., and T. N. Krishnamurti, 2006: Improved seasonal climate forecasts of the South Asian summer monsoon using a suite of 13 coupled ocean–atmosphere models. Mon. Wea. Rev., 134 , 16971721.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., T. N. Krishnamurti, and C. Gnanaseelan, 2007: Prediction of the diurnal cycle using a multimodel superensemble. Part II: Clouds. Mon. Wea. Rev., 135 , 40974116.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Dai, A., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104 , 3110931126.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17 , 930951.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analysis. J. Geophys. Res., 110 .D23105, doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128 , 462472.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and J. Sanjay, 2003: A new approach to the cumulus parameterization issue. Tellus, 55 , 275300.

  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, D. W. Shin, and C. E. Williford, 2000: Multimodel superensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131 , 10821102.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. Gnanaseelan, and A. Chakraborty, 2007: Prediction of the diurnal cycle using a multimodel superensemble. Part I: Precipitation. Mon. Wea. Rev., 135 , 36133632.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. Gnanaseelan, A. K. Mishra, and A. Chakraborty, 2008: Improved forecasts of the diurnal cycle in the tropics using multiple global models. Part I: Precipitation. J. Climate, 21 , 40294043.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and T. N. Krishnamurti, 2007: Current status of multimodel superensemble and operational NWP forecast of the Indian summer monsoon. J. Earth Syst. Sci., 116 , 369384.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34 , 1632.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. A. Dazlich, and Harshvardhan, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6 , 23942418.

  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Shin, K-S., G. R. North, Y-S. Ahn, and P. A. Arkin, 1990: Time scales and variability of area-averaged tropical oceanic rainfall. Mon. Wea. Rev., 118 , 15071516.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Stefanova, L., and T. N. Krishnamurti, 2002: Interpretation of seasonal climate forecast using Brier skill score, FSU superensemble, and the AMIP-I dataset. J. Climate, 15 , 537544.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjnsson, 1989: Condensation and cloud studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117 , 16411657.

    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109 .D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19 , 51905226.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 198 0
PDF Downloads 34 23 0

Improved Forecasts of the Diurnal Cycle in the Tropics Using Multiple Global Models. Part II: Asian Summer Monsoon

View More View Less
  • 1 Department of Meteorology, The Florida State University, Tallahassee, Florida
Restricted access

Abstract

The diurnal mode of the Asian summer monsoon during active and break periods is studied using four versions of the Florida State University (FSU) global spectral model (GSM). These versions differ in the formulation of cloud parameterization schemes in the model. Observational-based estimates show that there exists a divergent circulation at 200 hPa over the Asian monsoon region in the diurnal time scale that peaks at 1200 local solar time (LST) during break monsoon and at 1800 LST during active monsoon. A circulation in the opposite direction is seen near the surface. This circulation loop is completed by vertical ascending/descending motion over the monsoon domain and its surroundings. This study shows that global models have large phase and amplitude errors for the 200-hPa velocity potential and vertical pressure velocity over the monsoon region and its surroundings. Construction of a multimodel superensemble could reduce these errors substantially out to five days in advance. This was on account of assigning differential weights to the member models based on their past performance. This study also uses a unified cloud parameterization scheme that inherits the idea of a multimodel superensemble for combining member model forecasts. The advantage of this model is that it is an integrated part of the GSM and thus can improve the forecasts of other parameters as well through improved cloud cover. It was seen that this scheme had a larger impact on forecasting the diurnal cycle of cloud cover and precipitation of the Asian summer monsoon compared to circulation. The authors show that the diurnal circulation contributes to about 10% of the rate of change of total kinetic energy of the monsoon. Therefore, forecasting this pronounced diurnal mode has important implications for the energetics of the Asian summer monsoon.

Corresponding author address: Arindam Chakraborty, Dept. of Meteorology, The Florida State University, Tallahassee, FL 32306. Email: arch@io.met.fsu.edu

This article included in the Understanding Diurnal Variability of Precipitation through Observations and Models (UDVPOM) special collection.

Abstract

The diurnal mode of the Asian summer monsoon during active and break periods is studied using four versions of the Florida State University (FSU) global spectral model (GSM). These versions differ in the formulation of cloud parameterization schemes in the model. Observational-based estimates show that there exists a divergent circulation at 200 hPa over the Asian monsoon region in the diurnal time scale that peaks at 1200 local solar time (LST) during break monsoon and at 1800 LST during active monsoon. A circulation in the opposite direction is seen near the surface. This circulation loop is completed by vertical ascending/descending motion over the monsoon domain and its surroundings. This study shows that global models have large phase and amplitude errors for the 200-hPa velocity potential and vertical pressure velocity over the monsoon region and its surroundings. Construction of a multimodel superensemble could reduce these errors substantially out to five days in advance. This was on account of assigning differential weights to the member models based on their past performance. This study also uses a unified cloud parameterization scheme that inherits the idea of a multimodel superensemble for combining member model forecasts. The advantage of this model is that it is an integrated part of the GSM and thus can improve the forecasts of other parameters as well through improved cloud cover. It was seen that this scheme had a larger impact on forecasting the diurnal cycle of cloud cover and precipitation of the Asian summer monsoon compared to circulation. The authors show that the diurnal circulation contributes to about 10% of the rate of change of total kinetic energy of the monsoon. Therefore, forecasting this pronounced diurnal mode has important implications for the energetics of the Asian summer monsoon.

Corresponding author address: Arindam Chakraborty, Dept. of Meteorology, The Florida State University, Tallahassee, FL 32306. Email: arch@io.met.fsu.edu

This article included in the Understanding Diurnal Variability of Precipitation through Observations and Models (UDVPOM) special collection.

Save