Cloud Effects on the Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth’s Radiant Energy System (CERES) Data

Seiji Kato Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Fred G. Rose Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Fred G. Rose in
Current site
Google Scholar
PubMed
Close
,
David A. Rutan Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by David A. Rutan in
Current site
Google Scholar
PubMed
Close
, and
Thomas P. Charlock Science Directorate, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Thomas P. Charlock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low-level clouds, which tend to be stationary, it is postulated here that the meridional and vertical gradients of the cloud effect increase the rate of meridional energy transport by the dynamics of the atmosphere from the midlatitudes to the polar region, especially in fall and winter. Clouds then warm the surface in the polar regions except in the Arctic in summer. Clouds, therefore, contribute toward increasing the rate of meridional energy transport from the midlatitudes to the polar regions through the atmosphere.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. Email: seiji.kato@nasa.gov

Abstract

The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low-level clouds, which tend to be stationary, it is postulated here that the meridional and vertical gradients of the cloud effect increase the rate of meridional energy transport by the dynamics of the atmosphere from the midlatitudes to the polar region, especially in fall and winter. Clouds then warm the surface in the polar regions except in the Arctic in summer. Clouds, therefore, contribute toward increasing the rate of meridional energy transport from the midlatitudes to the polar regions through the atmosphere.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. Email: seiji.kato@nasa.gov

Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56 , 3845.

  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system version-4. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2005-104606, Vol. 26, 181 pp.

  • Charlock, T. P., F. G. Rose, D. A. Rutan, Z. Jin, and S. Kato, 2006: The global surface and atmosphere radiation budget: An assessment of accuracy with 5 years of calculations and observations. Preprints, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 10.5. [Available online at http://ams.confex.com/ams/pdfpapers/112984.pdf.].

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106 , 73137336.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K-N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Grassl, H., V. Jost, R. Kumar, J. Schulz, P. Bauer, and P. Schluessel, 2000: The Hamburg Ocean-Atmosphere Parameteres and Fluxes from Satellite Data (HOAPS): A climatological atlas of satellite-derived air-sea-interaction parameters over the oceans. Max Planck Institute for Meteorology Rep. 312, Hamburg, Germany, 15 pp.

  • Holton, J. R., 1992: An Introduction to Dynamical Meteorology. 3rd ed. Academic, 511 pp.

  • Jin, Z., and K. Stamnes, 1994: Radiative transfer in nonuniformly reflecting layered media: Atmosphere–ocean system. Appl. Opt., 33 , 431442.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kato, S., and N. G. Loeb, 2003: Twilight irradiance reflected by the earth estimated from Clouds and the Earth’s Radiant Energy System (CERES) measurements. J. Climate, 16 , 26462650.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and N. G. Loeb, 2005: Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res., 110 .D07202, doi:10.1029/2004JD005308.

    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22 , 146164.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, P. Minnis, J. A. Francis, T. P. Charlock, D. A. Rutan, E. E. Clothiaux, and S. Sun-Mack, 2006: Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set. Geophys. Res. Lett., 33 .L19804, doi:10.1029/2006GL026685.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Li, Z., and A. Trishchenko, 2001: Quantifying uncertainties in determining SW cloud radiative forcing and cloud absorption due to variability in atmospheric conditions. J. Atmos. Sci., 58 , 376389.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N-M. Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. J. Appl. Meteor., 42 , 240265.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. M. Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22 , 338351.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Minnis, P., D. F. Young, S. Sun-Mack, P. W. Heck, D. R. Doelling, and Q. Trepte, 2003: CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua. Remote Sensing of Clouds and the Atmosphere VIII, K. P. Schaefer et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5235), 37–48.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and T. H. Vonder Haar, 2001: Interannual variability of cloud forcing and meridional energy transport for the Northern Hemisphere winter from 1984 to 1990. J. Climate, 14 , 36433654.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate change research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92 , 40754095.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, R. B. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., D. A. Dazlich, and T. G. Gorsetti, and Harshvardhan, 1989: Interactions among radiation, convection and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46 , 19431970.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., A. Omura, W. B. Rossow, E. B. Carlson, Y. C. Zang, C. Stubenrauch, M. Kottek, and M. Wild, 2005: Cloud effects on the radiation budget based on ISCCP data (1991 to 1995). Int. J. Climatol., 25 , 11031125.

    • Search Google Scholar
    • Export Citation
  • Rose, F., T. P. Charlock, D. A. Rutan, and G. L. Smith, 1997: Tests of a constraint algorithm for the surface and atmospheric radiation budget. Preprints, Ninth Conf. on Atmospheric Radiation, Long Beach, CA, Amer. Meteor. Soc., 466–499.

  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Sohn, B-J., and E. A. Smith, 1992: The significance of cloud-radiative forcing to the general circulation on climate time scales—A satellite interpretation. J. Atmos. Sci., 49 , 845860.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement Program: Programatic background and design of the Cloud and Radiation Testbed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., and G. L. Smith, 1988: A study of cloud-generated radiative heating and its generation of available potential energy. Part II: Results for a climatological zonal mean January. J. Atmos. Sci., 45 , 39283943.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescale. J. Climate, 15 , 36913705.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and C. L. Parkinson, 1986: An Introduction to Three-Dimensional Climate Modeling. University Science Books, 422 pp.

  • Weaver, C. P., 2003: Efficiency of storm tracks and important climate parameter? The role of cloud radiative forcing in poleward heat transport. J. Geophys. Res., 108 .4108, doi:10.1029/2002JD002756.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, B. B. Lee III, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Yang, S-K., S. Zhou, and A. J. Miller, cited. 2007: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. [Available online at www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.html.].

  • Zhang, Y-C., and W. B. Rossow, 1997: Estimating meridional energy transport by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10 , 23582373.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and Coauthors, 2002: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn., 34 , 405445.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 103 6
PDF Downloads 192 91 6