Tropical and Stratospheric Influences on Extratropical Short-Term Climate Variability

Matthew Newman CIRES Climate Diagnostics Center, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew Newman in
Current site
Google Scholar
PubMed
Close
and
Prashant D. Sardeshmukh CIRES Climate Diagnostics Center, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relative impacts of tropical diabatic heating and stratospheric circulation anomalies on wintertime extratropical tropospheric variability are investigated in a linear inverse model (LIM) derived from the observed zero lag and 5-day lag covariances of 7-day running mean departures from the annual cycle. The model predicts the covariances at all other lags. The predicted and observed lag covariances are generally found to be in excellent agreement, even at the much longer lag of 21 days. This validates the LIM’s basic premise that the dynamics of weekly averages are effectively linear and stochastically driven, which justifies further linear diagnosis of the system.

Analysis of interactions among the LIM’s variables shows that tropical diabatic heating greatly enhances persistent variability over most of the Northern Hemisphere, especially over the Pacific Ocean and North America. Stratospheric effects are largely confined to the polar region, where they ensure that the dominant pattern of sea level pressure variability is the annular Arctic Oscillation rather than the more localized North Atlantic Oscillation. Over the North Atlantic, both effects are important, although some of the stratospheric influence is ultimately traceable to tropical forcing. In general, the tropically forced anomalies extend through the depth of the troposphere and into the stratosphere, whereas stratospherically generated anomalies tend to be largest at the surface and relatively weak at midtropospheric levels. Some persistent variability is, however, found even in the absence of these “external” forcings, especially near the amplitude maxima of the leading eigenmodes of the internal extratropical tropospheric evolution operator. One of these eigenmodes has a circumglobal zonal wavenumber-5 structure with maxima over the Arabian Sea and the central Pacific, and two others are associated with north–south dipole variations across the North Atlantic jet. Overall, tropical influences are generally found to be larger than stratospheric influences on extratropical tropospheric variability and have a pronounced impact on the persistent, and therefore the potentially predictable, portion of that variability.

Corresponding author address: Matthew Newman, NOAA/Earth System Research Laboratory, Boulder, CO 80305. Email: matt.newman@noaa.gov

Abstract

The relative impacts of tropical diabatic heating and stratospheric circulation anomalies on wintertime extratropical tropospheric variability are investigated in a linear inverse model (LIM) derived from the observed zero lag and 5-day lag covariances of 7-day running mean departures from the annual cycle. The model predicts the covariances at all other lags. The predicted and observed lag covariances are generally found to be in excellent agreement, even at the much longer lag of 21 days. This validates the LIM’s basic premise that the dynamics of weekly averages are effectively linear and stochastically driven, which justifies further linear diagnosis of the system.

Analysis of interactions among the LIM’s variables shows that tropical diabatic heating greatly enhances persistent variability over most of the Northern Hemisphere, especially over the Pacific Ocean and North America. Stratospheric effects are largely confined to the polar region, where they ensure that the dominant pattern of sea level pressure variability is the annular Arctic Oscillation rather than the more localized North Atlantic Oscillation. Over the North Atlantic, both effects are important, although some of the stratospheric influence is ultimately traceable to tropical forcing. In general, the tropically forced anomalies extend through the depth of the troposphere and into the stratosphere, whereas stratospherically generated anomalies tend to be largest at the surface and relatively weak at midtropospheric levels. Some persistent variability is, however, found even in the absence of these “external” forcings, especially near the amplitude maxima of the leading eigenmodes of the internal extratropical tropospheric evolution operator. One of these eigenmodes has a circumglobal zonal wavenumber-5 structure with maxima over the Arabian Sea and the central Pacific, and two others are associated with north–south dipole variations across the North Atlantic jet. Overall, tropical influences are generally found to be larger than stratospheric influences on extratropical tropospheric variability and have a pronounced impact on the persistent, and therefore the potentially predictable, portion of that variability.

Corresponding author address: Matthew Newman, NOAA/Earth System Research Laboratory, Boulder, CO 80305. Email: matt.newman@noaa.gov

Save
  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17 , 890905.

    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15 , 19691978.

  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Bader, J., and M. Latif, 2005: North Atlantic Oscillation response to anomalous Indian Ocean SST in a coupled GCM. J. Climate, 18 , 53825389.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52 , 37793796.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52 , 207226.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., and J. Frederiksen, 2003: The seasonal cycle of interannual variability and the dynamical imprint of the seasonally varying mean state. J. Atmos. Sci., 60 , 15771592.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45 .RG3003, doi:10.1029/2006RG000199.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. Van den Dool, 1991: Low-frequency waves and traveling storm tracks. Part I: Barotropic component. J. Atmos. Sci., 48 , 14201436.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., and K-K. Tung, 2007: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34 .L04809, doi:10.1029/2006GL028521.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20 , 449469.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, D. B. Stephenson, W. A. Lahoz, and M. P. Baldwin, 2003: Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? Quart. J. Roy. Meteor. Soc., 129 , 32053224.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110 .D14104, doi:10.1029/2004JD005431.

    • Search Google Scholar
    • Export Citation
  • Corti, S., F. Molteni, and T. N. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398 , 799802.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation”. Geophys. Res. Lett., 27 , 779782.

  • Deser, C., G. Magnusdottir, R. Saravana, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17 , 877889.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and H-D. Schilling, 1983: On the theory of the long-term variability of the atmosphere. J. Atmos. Sci., 40 , 10731085.

  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13 , 44304440.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy-zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64 , 32963311.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28 , 474485.

  • Hoerling, M. P., J. W. Hurrell, and T. Y. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Holton, J. R., and H. C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60 , 140148.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2004: Two teleconnection patterns involved in the North Atlantic/Arctic Oscillation. Geophys. Res. Lett., 31 .L20201, doi:10.1029/2004GL020933.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere Winter: Geographical distribution, structure and time-scale dependence. J. Atmos. Sci., 46 , 31223143.

    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., 2000: Northern Hemisphere winter stratospheric variability in The Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 126 , 26052630.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, R. J. Greatbatch, K. A. Peterson, and J. Lu, 2002: Tropical links of the Arctic oscillation. Geophys. Res. Lett., 29 , 19431946.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Gioretta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19 , 38633881.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and W. A. Robinson, 2005: Atmospheric stability in a generalized barotropic model. J. Atmos. Sci., 62 , 476491.

  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, C. R. Winkler, J. D. Scott, and J. J. Barsugli, 2000: A linear diagnosis of the coupled extratropical ocean–atmosphere system in the GFDL GCM. Atmos. Sci. Lett., 1 , 1425.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003: A study of subseasonal predictability. Mon. Wea. Rev., 131 , 17151732.

    • Search Google Scholar
    • Export Citation
  • Papanicolaou, G., and W. Kohler, 1974: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math., 27 , 641668.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98 , 534558.

  • Penland, C., and M. Ghil, 1993: Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon. Wea. Rev., 121 , 23552372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Randel, W. J., F. Wu, R. Swinbank, J. Nash, and A. O’Neill, 1999: Global QBO circulation derived from UKMO stratospheric analyses. J. Atmos. Sci., 56 , 457474.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., 1993: The baroclinic χ problem and its application to the diagnosis of atmospheric heating rates. J. Atmos. Sci., 50 , 10991112.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112 , 25242529.

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and P. Sura, 2007: Multiscale impacts of variable heating in climate. J. Climate, 20 , 56775695.

  • Sardeshmukh, P. D., M. Newman, and M. D. Borges, 1997: Free barotropic Rossby wave dynamics of the wintertime low-frequency flow. J. Atmos. Sci., 54 , 523.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., M. Newman, and C. R. Winkler, 1999: Dynamically consistent estimates of diabatic heating. Proc. 24th Annual Climate Diagnostics and Prediction Workshop, Tucson, AZ, NOAA, 172–175.

  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13 , 42684286.

  • Scott, J. D., M. A. Alexander, J. A. Collins, and C. A. Smith, 1997: Interactive visualization of climate data on the World Wide Web. Bull. Amer. Meteor. Soc., 78 , 19851989.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108 , 503534.

  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Taguchi, X., and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19 , 324332.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15 , 14211428.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. C. Furtado, and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46 , 25092527.

    • Search Google Scholar
    • Export Citation
  • Wei, K., W. Chen, and R. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34 .L16814, doi:10.1029/2007GL030478.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55 , 237258.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and A. J. Miller, 2005: The interaction of the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 18 , 143159.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 70 7
PDF Downloads 134 49 6