Employing Satellite-Derived Sea Ice Concentration to Constrain Upper-Ocean Temperature in a Global Ocean GCM

Achim Stössel Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Achim Stössel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The quality of Southern Ocean sea ice simulations in a global ocean general circulation model (GCM) depends decisively on the simulated upper-ocean temperature. This is confirmed by assimilating satellite-derived sea ice concentration to constrain the upper-layer temperature of a sea ice–ocean GCM. The resolution of the model’s sea ice component is about 22 km and thus comparable to the pixel resolution of the satellite data. The ocean component is coarse resolution to afford long-term integrations for investigations of the deep-ocean equilibrium response. Besides improving the sea ice simulation considerably, the simulations with constrained upper-ocean temperature yield much more realistic global deep-ocean properties, in particular when combined with glacial freshwater input. Both outcomes are relatively insensitive to the passive-microwave algorithm used to retrieve the ice concentration being assimilated. The sensitivity of the long-term global deep-ocean properties and circulation to the possible freshwater input from ice shelves and to the parameterization of vertical mixing in the Southern Ocean is reevaluated under the new constraint.

Corresponding author address: Dr. Achim Stössel, 3146 TAMU, College Station, TX 77843. Email: astoessel@ocean.tamu.edu

Abstract

The quality of Southern Ocean sea ice simulations in a global ocean general circulation model (GCM) depends decisively on the simulated upper-ocean temperature. This is confirmed by assimilating satellite-derived sea ice concentration to constrain the upper-layer temperature of a sea ice–ocean GCM. The resolution of the model’s sea ice component is about 22 km and thus comparable to the pixel resolution of the satellite data. The ocean component is coarse resolution to afford long-term integrations for investigations of the deep-ocean equilibrium response. Besides improving the sea ice simulation considerably, the simulations with constrained upper-ocean temperature yield much more realistic global deep-ocean properties, in particular when combined with glacial freshwater input. Both outcomes are relatively insensitive to the passive-microwave algorithm used to retrieve the ice concentration being assimilated. The sensitivity of the long-term global deep-ocean properties and circulation to the possible freshwater input from ice shelves and to the parameterization of vertical mixing in the Southern Ocean is reevaluated under the new constraint.

Corresponding author address: Dr. Achim Stössel, 3146 TAMU, College Station, TX 77843. Email: astoessel@ocean.tamu.edu

Save
  • Beckmann, A., and H. Goosse, 2003: A parameterization of ice shelf-ocean interaction for climate models. Ocean Modell., 5 , 157170.

  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea ice edge. J. Climate, 18 , 29032921.

  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP/NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17 , 46034619.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., A. Howard, P. Hogan, Y. Cheng, M. S. Dubovikov, and L. M. Montenegro, 2004: Modeling ocean deep convection. Ocean Modell., 7 , 7595.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 1995: SSM/I sea ice concentrations using the bootstrap algorithm. NASA Reference Publication 1380, 49 pp.

  • Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, 1997: Passive microwave algorithms for sea ice concentration—A comparison of two techniques. Remote Sens. Environ., 60 , 357384.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., and S. A. Harangozo, 2001: A comparison of five numerical weather prediction analysis climatologies in southern high latitudes. J. Climate, 14 , 3044.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., C. Heinze, M. Latif, and E. Maier-Reimer, 1996: Mean circulation and internal variability in an ocean primitive equation model. J. Phys. Oceanogr., 26 , 559580.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453456.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Deleersnijder, T. Fichefet, and M. H. England, 1999: Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res., 104 , 1368113695.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1998: Western Weddell Sea thermohaline stratification. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 215–240.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and B. A. Huber, 1990: Southern Ocean winter mixed layer. J. Geophys. Res., 95 , 1165511672.

  • Harms, S., E. Fahrbach, and V. H. Strass, 2001: Sea ice transports in the Weddell Sea. J. Geophys. Res., 106 , 90579073.

  • Hellmer, H. H., 2004: Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys. Res. Lett., 31 .L10307, doi:10.1029/2004GL019506.

    • Search Google Scholar
    • Export Citation
  • Holland, D., S. S. Jacobs, and A. Jenkins, 2003: Modelling the ocean circulation beneath the Ross ice shelf. Antarct. Sci., 15 , 1323.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and M. N. Raphael, 2006: Twentieth century simulation of the southern hemisphere climate in coupled models. Part II: Sea ice conditions and variability. Climate Dyn., 26 , 229245.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and J. C. Comiso, 1989: Sea ice and oceanic processes on the Ross Sea continental shelf. J. Geophys. Res., 94 , 1819518211.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and D. Holland, 2002: A model study of ocean circulation beneath Filchner-Ronne Ice Shelf, Antarctica: Implications for bottom water formation. Geophys. Res. Lett., 29 .1193, doi:10.1029/2001GL014589.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18 , 40134031.

    • Search Google Scholar
    • Export Citation
  • Kaleschke, L., C. Lüpkes, T. Vihma, J. Haarpaitner, A. Bochert, J. Hartmann, and G. Heygster, 2001: SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Can. J. Remote Sens., 27 , 526537.

    • Search Google Scholar
    • Export Citation
  • Kim, S-J., and A. Stössel, 2001: Impact of plume convection on global thermohaline properties and circulation. J. Phys. Oceanogr., 31 , 656674.

    • Search Google Scholar
    • Export Citation
  • King, J. C., J. Turner, G. J. Marshall, W. M. Connolley, and T. A. Lachlan-Cope, 2003: Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records. Antarctic Research Series, Vol. 79 , Amer. Geophys. Union. 1730.

    • Search Google Scholar
    • Export Citation
  • Koentopp, M., O. Eisen, C. Kottmeier, L. Padman, and P. Lemke, 2005: Influence of tides on sea ice in the Weddell Sea: Investigations with a high-resolution dynamic-thermodynamic sea ice model. J. Geophys. Res., 110 .C02014, doi:10.1029/2004JC002405.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17 , 16051614.

    • Search Google Scholar
    • Export Citation
  • Legutke, S., and E. Maier-Reimer, 1999: Climatology of the HOPE-G global ocean general circulation model. German Climate Computer Center Tech. Rep. 21, Hamburg, Germany, 90 pp.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp.

  • Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18 , 48794894.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2006: Assimilation of ice concentration in an ice–ocean model. J. Atmos. Oceanic Technol., 23 , 742749.

    • Search Google Scholar
    • Export Citation
  • Markus, T., and D. J. Cavalieri, 2000: An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38 , 13871398.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory,and models. Rev. Geophys., 37 , 164.

  • Marsland, S., and J-O. Wolff, 2001: On the sensitivity of Southern Ocean sea ice to the surface fresh-water flux: A model study. J. Geophys. Res., 106 , 27232741.

    • Search Google Scholar
    • Export Citation
  • Marsland, S., H. Haak, J. H. Jungclaus, M. Latif, and F. Roeske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Marsland, S., N. L. Bindoff, G. D. Williams, and W. F. Budd, 2004: Modeling water mass formation in the Mertz Glacier polynya and Adelie depression, East Antarctica. J. Geophys. Res., 109 .C11003, doi:10.1029/2004JC002441.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1990: Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res., 95 , 1164111654.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and R. A. Iannuzzi, 1998: Antarctic ocean-ice interaction: Implications from ocean bulk property distributions in the Weddell Gyre. Antarctic Sea Ice: Physical Processes, Interactions and Variability, M. O. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 243–271.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., and Coauthors, 2001: Snow on Antarctic sea ice. Rev. Geophys., 39 , 413445.

  • McPhee, M. G., C. Kottmeier, and J. H. Morison, 1999: Ocean heat flux in the central Weddell Sea during winter. J. Phys. Oceanogr., 29 , 11661179.

    • Search Google Scholar
    • Export Citation
  • Ogura, T., A. Abe-Ouchi, and H. Hasumi, 2004: Effects of sea ice dynamics on the Antarctic sea ice distribution in a coupled ocean atmosphere model. J. Geophys. Res., 109 .C04025, doi:10.1029/2003JC002022.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and T. Whitworth III, 2005: Southern Ocean. Vol. 1, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), International WOCE Project Office, 223 pp.

    • Search Google Scholar
    • Export Citation
  • Paluszkiewicz, T., and R. D. Romea, 1997: A one-dimensional plume model for the parameterisation of oceanic deep convection. Dyn. Atmos. Oceans, 26 , 95130.

    • Search Google Scholar
    • Export Citation
  • Powell, D. C., T. Markus, and A. Stössel, 2005: Effects of snow depth forcing on Southern Ocean sea ice simulations. J. Geophys. Res., 110 .C06001, doi:10.1029/2003JC002212.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., J. C. King, and T. Markus, 2002: Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget. J. Geophys. Res., 107 .3063, doi:10.1029/2000JC000720.

    • Search Google Scholar
    • Export Citation
  • Schodlok, M. P., H. H. Hellmer, G. Rohardt, and E. Fahrbach, 2006: Weddell Sea iceberg drift: Five years of observations. J. Geophys. Res., 111 .C06018, doi:10.1029/2004JC002661.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

    • Search Google Scholar
    • Export Citation
  • Stössel, A., and T. Markus, 2004: Using satellite-derived ice concentration to represent Antarctic coastal polynyas in ocean climate models. J. Geophys. Res., 109 .C02014, doi:10.1029/2003JC001779.

    • Search Google Scholar
    • Export Citation
  • Stössel, A., S-J. Kim, and S. S. Drijfhout, 1998: The impact of Southern Ocean sea ice in a global ocean model. J. Phys. Oceanogr., 28 , 19992018.

    • Search Google Scholar
    • Export Citation
  • Stössel, A., K. Yang, and S-J. Kim, 2002: On the role of sea ice and convection in a global ocean model. J. Phys. Oceanogr., 32 , 11941208.

    • Search Google Scholar
    • Export Citation
  • Stössel, A., M. M. Stössel, and J-T. Kim, 2007: High-resolution sea ice in long-term global ocean GCM integrations. Ocean Modell., 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Strass, V. H., and E. Fahrbach, 1998: Temporal and regional variation of sea ice draft and coverage in the Weddell Sea obtained from upward looking sonars. Antarctic Sea Ice: Physical Processes, Interactions and Variability, M. O. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 123–139.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and A. Beckmann, 2004: Parameterization of vertical mixing in the Weddell Sea. Ocean Modell., 6 , 83100.

  • Timmermann, R., A. Worby, H. Goosse, and T. Fichefet, 2004: Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled sea ice–ocean model. J. Geophys. Res., 109 .C07017, doi:10.1029/2003JC002242.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea-ice-ocean model. Ocean Modell., 8 , 175201.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., J. Uotila, B. Cheng, and J. Launiainen, 2002: Surface heat budget over the Weddell Sea: Buoy results and model comparisons. J. Geophys. Res., 107 .3013, doi:10.1029/2000JC000372.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., A. H. Orsi, S-J. Kim, W. D. Nowlin, and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic slope front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 1–27.

    • Search Google Scholar
    • Export Citation
  • Wolff, J-O., E. Maier-Reimer, and S. Legutke, 1997: The Hamburg Ocean Primitive Equation model HOPE. German Climate Computer Center Tech. Rep. 31, Hamburg, Germany, 98 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 49 9
PDF Downloads 54 22 2