• Aires, F., C. Prigent, and W. B. Rossow, 2004: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res., 109 .D04313, doi:10.1029/2003JD003527.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and M. J. Suarez, 2002: Wind stress simulations and equatorial momentum budget in an AGCM. J. Atmos. Sci., 59 , 30513073.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82 , 24152434.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65 , 11701185.

  • Barkstrom, B., E. Harrison, G. Smith, R. Green, J. Kibler, and R. Cess, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70 , 12541262.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55 , 10911108.

  • Brest, C. L., W. B. Rossow, and M. D. Roiter, 1997: Update of radiance calibrations for ISCCP. J. Atmos. Oceanic Technol., 14 , 10911109.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., 2004: A two-year comparison of the surface water and energy budgets between two OASIS sites and NCEP–NCAR reanalysis data. J Hydrometeor., 5 , 311326.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere. Reidel, 299 pp.

  • Cavalieri, D., C. Parkinson, P. Gloerson, and H. J. Zwally, cited. 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html.].

  • Chou, M-D., M. J. Suarez, X-Z. Liang, and M. M-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Goddard Space Flight Center Tech. Rep. TM-2001-104606, Vol. 19, 55 pp.

  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85 , 409424.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 2955.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: The ERA description. ECMWF Re-Analysis Project Report Series 1, 86 pp.

  • Green, R. N., F. B. House, P. W. Stackhouse, X. Wu, S. A. Ackermann, W. L. Smith, and M. J. Johnson, 1990: Intercomparison of scanner and nonscanner measurements for the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 95 , 1178511798.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., D. Su, M. Kanamitsu, and J. Schemm, 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81 , 26312644.

    • Search Google Scholar
    • Export Citation
  • Jin, M., 2004: Analysis of land skin temperature using AVHRR observations. Bull. Amer. Meteor. Soc., 85 , 587600.

  • Jin, M., R. E. Dickinson, and A. M. Vogelmann, 1997: A comparison of CCM2–BATS skin temperature and surface-air temperature with satellite and surface observations. J. Climate, 10 , 15051524.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4 , 335342.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002a: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002b: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83 , 10191037.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, J. Zhu, L. Yang, and J. W. Merchant, 2001: Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens., 21 , 13031330.

    • Search Google Scholar
    • Export Citation
  • Masson, V., J-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze, 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16 , 12611282.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WRMC): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185220.

  • Prigent, C., F. Aires, and W. B. Rossow, 2003: Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures. J. Geophys. Res., 108 .4310, doi:10.1029/2002JD002301.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roads, J., 2003: The NCEP–NCAR, NCEP–DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4 , 826840.

  • Robertson, F. R., and H-I. Lu, 2004: How well are recent climate variability signals resolved by satellite radiative flux estimates? Preprints. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., CD-ROM, 5.4.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 120.

  • Rossow, W. B., and L. C. Garder, 1993: Validation of ISCCP cloud detections. J. Climate, 6 , 23702393.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612288.

  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. ECMWF Re-Analyses Project Report Series 1, 62 pp.

  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109 .D24115, doi:10.1029/2004JD005306.

    • Search Google Scholar
    • Export Citation
  • Sud, Y., and D. M. Mocko, 1999: New snow-physics to complement SSiB. Part I: Design and evaluation with ISLSCP initiative I datasets. J. Meteor. Soc. Japan, 77 , 335348.

    • Search Google Scholar
    • Export Citation
  • Tamagawa, I., 1996: Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area. Bound.-Layer Meteor., 77 , 120.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2002: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCM) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tsuang, B-J., 2003: Analytical asymptotic solutions to determine interactions between the planetary boundary layer and the Earth’s surface. J. Geophys. Res., 108 .8608, doi:10.1029/2002JD002557.

    • Search Google Scholar
    • Export Citation
  • Tsuang, B-J., 2005: Ground heat flux determination according to land skin temperature observations from in situ stations and satellites. J. Hydrometeor., 6 , 371390.

    • Search Google Scholar
    • Export Citation
  • Tsuang, B-J., and H. C. Yuan, 1994: The ideal numerical surface thickness to determine ground surface temperature and schemes comparison (in Chinese). Atmos. Sci., 22 , 189218.

    • Search Google Scholar
    • Export Citation
  • Tsuang, B-J., and C-Y. Tu, 2002: Model structure and land parameter identification: An inverse problem approach. J. Geophys. Res., 107 .4096, doi:10.1029/2001JD000711.

    • Search Google Scholar
    • Export Citation
  • Tsuang, B-J., C-Y. Tu, and K. Arpe, 2001: Lake parameterization for climate models. Max Planck Institute for Meteorology Rep. 316, 72 pp.

  • Tu, C-Y., and B-J. Tsuang, 2005: Cool-skin simulation by a one-column ocean model. Geophys. Res. Lett., 32 .L22602, doi:10.1029/2005GL024252.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J. F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125 , 24012426.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Y. Mitsuta, 1991: Turbulence structure and transfer characteristics in the surface layer of the HEIFE Gobi area. J. Meteor. Soc. Japan, 69 , 587593.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17171730.

    • Search Google Scholar
    • Export Citation
  • Werth, D., and R. Avissar, 2004: The regional evapotranspiration of the Amazon. J. Hydrometeor., 5 , 100109.

  • Yang, K., T. Koike, P. Stackhouse, C. Mikovitz, and S. J. Cox, 2006: An assessment of satellite surface radiation products for highlands with Tibet instrumental data. Geophys. Res. Lett., 33 .L22403, doi:10.1029/2006GL027640.

    • Search Google Scholar
    • Export Citation
  • Yang, S-K., Y-T. Hou, A. J. Miller, and K. A. Campana, 1999: Evaluation of the Earth Radiation Budget in the NCEP–NCAR Reanalysis with ERBE. J. Climate, 12 , 477493.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets, 1: Method and sensitivity to input data uncertainties. J. Geophys. Res., 100 , 11491166.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111 .D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and P. W. Stackhouse Jr., 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112 .D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 49 3
PDF Downloads 46 28 2

Evaluations of Land–Ocean Skin Temperatures of the ISCCP Satellite Retrievals and the NCEP and ERA Reanalyses

View More View Less
  • 1 Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
  • | 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 3 Department of Applied Physics and Applied Mathematics, NASA Goddard Institute for Space Studies, Columbia University, New York, New York
  • | 4 Institute for Atmospheric and Climate Science, Zürich, Switzerland
  • | 5 Department of Civil Engineering, University of Tokyo, Tokyo, Japan
Restricted access

Abstract

This study evaluates the skin temperature (ST) datasets of the International Satellite Cloud Climatology Project (ISCCP) D satellite product, the ISCCP FD satellite product, the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–NCAR Reanalysis, and the NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis. The monthly anomalies of all the datasets are correlated to each other and to most of the ground-truth stations with correlation coefficients >0.50. To evaluate their qualities, the 5 ST datasets are used to calculate clear-sky (CS) outgoing longwave radiation (OLR) and upward surface longwave radiation (USLR); the results are compared with the Earth Radiation Budget Experiment (ERBE) satellite observation and 14 surface stations. The satellite-derived STs and ERA-40 ST tend to bias high on hot deserts (e.g., Sahara Desert), and the reanalyzed STs tend to bias low in mountain areas (e.g., Tibet). In Northern Hemisphere high-latitude regions (tundra, wetlands, deciduous needle-leaf forests, and sea ice), the CS OLR anomalies calculated using the satellite-derived STs have higher correlations and lower root-mean-squared errors with the ERBE satellite observation than those derived from using the reanalyzed STs. ERA-40 underestimates the amplitude of the seasonal ST over glaciers. All the reanalysis products (ERA-40, NCEP–NCAR, and NCEP–DOE AMIP-II) overestimate the ST during partial sea ice–covered periods in the middle-high-latitude oceans. Nonetheless, suspected spurious noises with an amplitude of 2 K in the satellite-derived STs produce a physically unviable anomaly over earth’s surface where the amplitude of the anomaly is weak (such as open-water bodies, croplands, rain forest, grasslands, hot deserts, and cold deserts). Better land–ocean–ice schemes for a reanalysis should be developed for desert regions, high plateaus, fractional sea ice–covered oceans, and seasonally snow-covered lands, where the largest ST errors are identified.

* Current affiliation: Insitute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Corresponding author address: Ben-Jei Tsuang, Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan. Email: tsuang@nchu.edu.tw

Abstract

This study evaluates the skin temperature (ST) datasets of the International Satellite Cloud Climatology Project (ISCCP) D satellite product, the ISCCP FD satellite product, the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–NCAR Reanalysis, and the NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis. The monthly anomalies of all the datasets are correlated to each other and to most of the ground-truth stations with correlation coefficients >0.50. To evaluate their qualities, the 5 ST datasets are used to calculate clear-sky (CS) outgoing longwave radiation (OLR) and upward surface longwave radiation (USLR); the results are compared with the Earth Radiation Budget Experiment (ERBE) satellite observation and 14 surface stations. The satellite-derived STs and ERA-40 ST tend to bias high on hot deserts (e.g., Sahara Desert), and the reanalyzed STs tend to bias low in mountain areas (e.g., Tibet). In Northern Hemisphere high-latitude regions (tundra, wetlands, deciduous needle-leaf forests, and sea ice), the CS OLR anomalies calculated using the satellite-derived STs have higher correlations and lower root-mean-squared errors with the ERBE satellite observation than those derived from using the reanalyzed STs. ERA-40 underestimates the amplitude of the seasonal ST over glaciers. All the reanalysis products (ERA-40, NCEP–NCAR, and NCEP–DOE AMIP-II) overestimate the ST during partial sea ice–covered periods in the middle-high-latitude oceans. Nonetheless, suspected spurious noises with an amplitude of 2 K in the satellite-derived STs produce a physically unviable anomaly over earth’s surface where the amplitude of the anomaly is weak (such as open-water bodies, croplands, rain forest, grasslands, hot deserts, and cold deserts). Better land–ocean–ice schemes for a reanalysis should be developed for desert regions, high plateaus, fractional sea ice–covered oceans, and seasonally snow-covered lands, where the largest ST errors are identified.

* Current affiliation: Insitute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Corresponding author address: Ben-Jei Tsuang, Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan. Email: tsuang@nchu.edu.tw

Save