• Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5 , 944958.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192433.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2003: Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res., 108 .4732, doi:10.1029/2003JD003805.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., 2004: Investigation of a large-scale mode of ocean–atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. J. Climate, 17 , 40894098.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S-P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Auad, G., A. J. Miller, and J. O. Roads, 2004: Pacific Ocean forecasts. J. Mar. Syst., 45 , 7590.

  • Balmeseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994: ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46 , 497511.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1981: Statistical prediction of North American air temperature from Pacific predictors. Mon. Wea. Rev., 109 , 10211041.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., N. Graham, M. Cane, S. Zebiak, S. Dolan, J. O’Brien, and D. Legler, 1988: On the prediction of the El Niño of 1986–1987. Science, 241 , 192196.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., N. Graham, S. Pazan, W. White, M. Latif, and M. Flügel, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Rev. Lett., 26 , 615618.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and C. F. Ropelewski, 1992: Prediction of ENSO episodes using canonical correlation analysis. J. Climate, 5 , 13161345.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. H. Glantz, and Y. He, 1999: Predictive skill of statistical and dynamical climate models in forecasts of SST during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80 , 217244.

    • Search Google Scholar
    • Export Citation
  • Benson, A. J., and A. W. Trites, 2002: Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish., 3 , 95113.

    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52 , 37793796.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. C. Dolan, and S. E. Zebiak, 1986: Experimental forecasts of the El Niño. Nature, 321 , 827832.

  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34 .L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17 , 41434158.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8 , 233246.

  • DelSole, T., and A. Y. Hou, 1999: Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56 , 34363456.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and P. Chang, 2003: Predictable component analysis, canonical correlation analysis, and autoregressive models. J. Atmos. Sci., 60 , 409416.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, and K. T. Redmond, 1999: United States streamflow probabilities based on forecasted La Niña, winter–spring 2000. Experimental Long-Lead Forecast Bulletin, Vol. 8, No. 3, Center for Ocean–Land–Atmosphere Studies, 55–60.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10 , 557578.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12 , 27192733.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Farrell, B., and P. J. Ioannou, 1995: Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52 , 16421656.

  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett., 29 .1643, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29 , 284305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual ENSO and interdecadal ENSO-like variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12 , 21132123.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., T. P. Barnett, R. Wilde, M. Ponater, and S. Scuhbert, 1994: On the roles of tropical and midlatitude SSTs in forcing annual to interdecadal variability in the winter Northern Hemisphere circulation. J. Climate, 7 , 14161442.

    • Search Google Scholar
    • Export Citation
  • Grötzner, A., M. Latif, A. Timmerman, and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere general circulation model. J. Climate, 12 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on the exchanges between the Tropics and extratropics. Science, 240 , 12931302.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., D. Huppert, and D. P. Lettenmaier, 2002: Economic value of long-lead streamflow forecasts for Columbia River hydropower. J. Water Resour. Plann. Manage., 128 , 91101.

    • Search Google Scholar
    • Export Citation
  • Harnack, R. P., 1979: A further assessment of winter temperature predictions using objective methods. Mon. Wea. Rev., 107 , 250267.

  • Hasselmann, K., 1988: PIPs and POPs—The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93 , 1101511021.

    • Search Google Scholar
    • Export Citation
  • Haworth, C., 1978: Some relationships between sea surface temperature anomalies and surface pressure anomalies. Quart. J. Roy. Meteor. Soc., 104 , 131146.

    • Search Google Scholar
    • Export Citation
  • Hill, H. S. J., J. Park, J. W. Mjelde, W. D. Rosenthal, H. A. Love, and S. W. Fuller, 2000: Comparing the value of Southern Oscillation index-based climate forecast methods for Canadian and U.S. wheat producers. Agric. For. Meteor., 100 , 261272.

    • Search Google Scholar
    • Export Citation
  • Huppert, D., J. H. Kaje, A. F. Hamlet, E. L. Miles, and A. K. Snover, 2002: Applications of climate forecasts in natural resource management: Implications for industry. The Climate Report, Vol. 3, No. 2, Center for Science in the Earth System, 12–22.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: A theory of interdecadal climate variability of the North Pacific Ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for the decadal variation of ENSO. Geophys. Res. Lett., 26 , 17431747.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO models. J. Climate, 18 , 44254444.

  • Kwon, Y-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20 , 24162433.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and S. J. Mason, 2001: Forecasts of near-global sea surface temperatures using canonical correlation analysis. J. Climate, 14 , 38193833.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much “skill” was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81 , 21072119.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , 1437514394.

  • Lau, K-M., and P. H. Chan, 1986: The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc., 67 , 533534.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and P. H. Chan, 1988: Intraseasonal and interannual variations of tropical convection: A possible link between 40–50 day oscillation and ENSO? J. Atmos. Sci., 45 , 506521.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual and interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and G. M. Mimmak, 2002: Comparison of some statistical methods of probablistic forecasting of ENSO. J. Climate, 15 , 829.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2001: Nonlinear principal component analysis: Tropical Indo–Pacific sea surface temperature and sea level pressure. J. Climate, 14 , 219233.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Namias, J., 1972: Experiments in objectively predicting some atmospheric and oceanic variables for the winter of 1971–1972. J. Appl. Meteor., 11 , 11641174.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1976: Negative ocean–air feedback systems over the North Pacific in the transition from warm to cold seasons. Mon. Wea. Rev., 104 , 11071121.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20 , 23332356.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003a: A study of subseasonal predictability. Mon. Wea. Rev., 131 , 17151732.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003b: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7 , 19151925.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11 , 24822490.

    • Search Google Scholar
    • Export Citation
  • Park, S., M. A. Alexander, and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19 , 62436261.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117 , 21652185.

  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98 , 534558.

  • Penland, C., and M. Ghil, 1993: Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon. Wea. Rev., 121 , 23552372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño-3 sea surface temperature anomalies using linear inverse modeling. J. Climate, 6 , 10671076.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995a: Error and sensitivity analysis of geohysical systems. J. Climate, 8 , 19881998.

  • Penland, C., and P. D. Sardeshmukh, 1995b: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 2001: Expected and actual errors of linear inverse model forecasts. Mon. Wea. Rev., 129 , 17401745.

  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19 , 57965815.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, and M. Latif, 2000: Connections between the Pacific Ocean Tropics and midlatitudes on decadal time scales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15 , 319324.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., 1996: Interdecadal variability over the North Pacific in a multi-century climate simulation. Climate Dyn., 12 , 227241.

    • Search Google Scholar
    • Export Citation
  • Roden, G. I., and G. W. Groves, 1960: On the statistical prediction of ocean temperature. J. Geophys. Res., 65 , 249263.

  • Rogers, J. C., 1981: Spatial variability of seasonal sea level pressure and 500 mb height anomalies. Mon. Wea. Rev., 109 , 20932106.

  • Rogers, J. C., 1990: Patterns of low-frequency monthly sea level pressure (1899–1986) and associated cyclone frequencies. J. Climate, 3 , 13641379.

    • Search Google Scholar
    • Export Citation
  • Ryan, H. F., and M. Noble, 2002: Sea level response to ENSO along the central California coast: How the 1997–1998 event compares with the historic record. Prog. Oceanogr., 54 , 149169.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19 , 34833517.

  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11 , 165188.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Scott, R. B., 2003: Predictability of SST in an idealized, one-dimensional, coupled atmosphere–ocean climate model with stochastic forcing and advection. J. Climate, 16 , 323335.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120.

    • Search Google Scholar
    • Export Citation
  • Stern, P. C., and W. E. Easterling, 1999: Making Climate Forecasts Matter. National Academy Press, 175 pp.

  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2002: Altimeter-derived surface circulation in the large-scale NE Pacific Gyres. Part 2: 1997–1998 El Niño anomalies. Prog. Oceanogr., 53 , 185214.

    • Search Google Scholar
    • Export Citation
  • Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO events: A neural network–extended EOF approach. J. Climate, 11 , 2941.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., and W. B. White, 1997: Evolution of the ENSO signal over the Indo–Pacific domain. J. Phys. Oceanogr., 27 , 683696.

  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9 , 10041020.

  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of ENSO-like decadal variability. J. Climate, 18 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28 , 39233926.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16 , 26532667.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal Oscillation Pattern analysis of the 30–60 day oscillation in a GCM equatorial troposphere. J. Geophys. Res., 93 , 1102211036.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4 , 5384.

  • Walsh, J. E., and M. B. Richman, 1981: Seasonality in the associations between surface temperatures over the United States and the North Pacific Ocean. Mon. Wea. Rev., 109 , 767783.

    • Search Google Scholar
    • Export Citation
  • Wang, F., and P. Chang, 2004: Effect of oceanic advection on the potential predictability of sea surface temperature. J. Climate, 17 , 36033615.

    • Search Google Scholar
    • Export Citation
  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A comprehensive ocean-atmosphere data set. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Yang, H., L. Zhengyu, and H. Wang, 2004: Influence of extratropical thermal and wind forcings on equatorial thermocline in an ocean GCM. J. Phys. Oceanogr., 34 , 174187.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. M. Moore, A. Wittenberg, M. Harrison, A. Rosati, A. T. Weaver, and J. Vialard, 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, Y., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56 , 34163435.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 823 419 17
PDF Downloads 579 256 11

Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 3 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 4 NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 5 Department of Oceanography, Texas A&M University, College Station, Texas
Restricted access

Abstract

A linear inverse model (LIM) is used to predict Pacific (30°S–60°N) sea surface temperature anomalies (SSTAs), including the Pacific decadal oscillation (PDO). The LIM is derived from the observed simultaneous and lagged covariance statistics of 3-month running mean Pacific SSTA for the years 1951–2000. The model forecasts exhibit significant skill over much of the Pacific for two to three seasons in advance and up to a year in some locations, particulary for forecasts initialized in winter. The predicted and observed PDO are significantly correlated at leads of up to four seasons, for example, the correlation exceeds 0.6 for 12-month forecasts initialized in January–March (JFM). The LIM-based PDO forecasts are more skillful than persistence or a first-order autoregressive model, and have comparable skill to LIM forecasts of El Niño SSTAs. Filtering the data indicates that much of the PDO forecast skill is due to ENSO teleconnections and the global trend.

Within LIM, SST anomalies can grow due to constructive interference of the empirically determined modes, even though the individual modes are damped over time. For the Pacific domain, the basinwide SST variance can grow for ∼14 months, consistent with the skill of the actual predictions. The optimal structure (OS), the initial SSTA pattern that LIM indicates should increase the most rapidly with time, is clearly relevant to the predictions, as the OS develops into a mature ENSO and PDO event 6–10 months later. The OS is also consistent with the seasonal footprinting mechanism (SFM) and the meridional mode (MM); the SFM and MM involve a set of atmosphere–ocean interactions that have been hypothesized to initiate ENSO events.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, Physical Sciences Division, R/PSD1, 325 Broadway, Boulder, CO 80305-3328. Email: michael.alexander@noaa.gov

Abstract

A linear inverse model (LIM) is used to predict Pacific (30°S–60°N) sea surface temperature anomalies (SSTAs), including the Pacific decadal oscillation (PDO). The LIM is derived from the observed simultaneous and lagged covariance statistics of 3-month running mean Pacific SSTA for the years 1951–2000. The model forecasts exhibit significant skill over much of the Pacific for two to three seasons in advance and up to a year in some locations, particulary for forecasts initialized in winter. The predicted and observed PDO are significantly correlated at leads of up to four seasons, for example, the correlation exceeds 0.6 for 12-month forecasts initialized in January–March (JFM). The LIM-based PDO forecasts are more skillful than persistence or a first-order autoregressive model, and have comparable skill to LIM forecasts of El Niño SSTAs. Filtering the data indicates that much of the PDO forecast skill is due to ENSO teleconnections and the global trend.

Within LIM, SST anomalies can grow due to constructive interference of the empirically determined modes, even though the individual modes are damped over time. For the Pacific domain, the basinwide SST variance can grow for ∼14 months, consistent with the skill of the actual predictions. The optimal structure (OS), the initial SSTA pattern that LIM indicates should increase the most rapidly with time, is clearly relevant to the predictions, as the OS develops into a mature ENSO and PDO event 6–10 months later. The OS is also consistent with the seasonal footprinting mechanism (SFM) and the meridional mode (MM); the SFM and MM involve a set of atmosphere–ocean interactions that have been hypothesized to initiate ENSO events.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, Physical Sciences Division, R/PSD1, 325 Broadway, Boulder, CO 80305-3328. Email: michael.alexander@noaa.gov

Save