• Allan, R. J., and T. Ansell, 2006: A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J. Climate, 19 , 58165842.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419 , 224232.

  • Anthes, R. A., R. W. Corell, G. Holland, J. W. Hurrell, M. C. MacCracken, and K. E. Trenberth, 2006: Hurricanes and global warming—Potential linkages and consequences. Bull. Amer. Meteor. Soc., 87 , 623628.

    • Search Google Scholar
    • Export Citation
  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag., 41 , 237276.

  • Berry, D. I., and E. C. Kent, 2005: The effect of instrument exposure on marine air temperatures: An assessment using VOSClim Data. Int. J. Climatol., 25 , 10071022.

    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., and P. D. Jones, 1993: Global surface air temperature variations during the twentieth century: Part 2, implications for large-scale high-frequency palaeoclimatic studies. Holocene, 3 , 7788.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111 .D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19 , 35893606.

  • Davey, C. A., R. A. Pielke Sr., and K. P. Gallo, 2006: Differences between near-surface equivalent temperature and temperature trends for the Eastern United States—Equivalent temperature as an alternative measure of heat content. Global Planet. Change, 54 , 1932.

    • Search Google Scholar
    • Export Citation
  • Diggle, P. J., K. Y. Liang, and S. L. Zeger, 1996: General linear models for longitudinal data. Analysis of Longitudinal Data, Vol. 13, Oxford Statistical Science Series, Oxford University Press, 54–70.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and T. C. Peterson, 1995: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15 , 369377.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., T. R. Karl, J. H. Lawrimore, and S. A. Del Greco, cited. 1999: United States historical climatology network daily temperature, precipitation, and snow data for 1871–1997. NOAA ORNL/CDIAC—118, NDP-070. [Available online at http://cdiac.esd.ornl.gov/epubs/ndp/ndp070/ndp070.html.].

  • Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. Climatic Change, 31 , 349367.

  • Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends of U.S. surface humidity and temperature. J. Climate, 12 , 811828.

  • Goff, J. A., 1957: Saturation pressure of water on the new Kelvin temperature scale. Proc. Semi-annual Meeting of the American Society of Heating and Ventilating Engineers, Murray Bay, QC, Canada, American Society of Heating and Ventilating Engineers. 347354.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160°F to 212°F. Trans. Amer. Soc. Heat. Vent. Eng., 52 , 95121.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Ingram, W. J., 2002: On the robustness of the water vapor feedback: GCM vertical resolution and formulation. J. Climate, 15 , 917921.

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25 , 865879.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. E., R. D. Burman, and R. G. Allen, 1990: Evapotranspiration and Irrigation Water Requirements: A Manual. American Society of Civil Engineers, 332 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37 , 173199.

    • Search Google Scholar
    • Export Citation
  • Kaiser, D. P., 2000: Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett., 27 , 21932196.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., S. J. Hassol, C. D. Miller, and W. L. Murray, 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. Climate Change Science Program and Subcommittee on Global Change Research Rep., 218 pp.

  • Kent, E. C., and P. K. Taylor, 1996: Accuracy of humidity measurement on ships: Consideration of solar radiation effects. J. Atmos. Oceanic Technol., 13 , 13171321.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., R. J. Tiddy, and P. K. Taylor, 1993: Correction of marine air temperature observations for solar radiation effects. J. Atmos. Oceanic Technol., 10 , 900906.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. G. Challenor, and P. K. Taylor, 1999: A statistical determination of the random observational errors present in voluntary observing ships meteorological reports. J. Atmos. Oceanic Technol., 16 , 905914.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16 , 11971226.

    • Search Google Scholar
    • Export Citation
  • Lott, N., R. Baldwin, and P. Jones, 2001: The FCC integrated surface hourly database, a new resource of global climate data. National Climatic Data Center Tech. Rep. 2001-01, 42 pp.

  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32 , 315.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28 , 351363.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., C. K. Folland, and M. Jackson, 1995: Marine surface temperature: Observed variations and data requirements. Climatic Change, 31 , 559600.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1996: The climatology of relative humidity in the atmosphere. J. Climate, 9 , 34433463.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19 , 446469.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2000: Temporal trends in United States dew point temperatures. Int. J. Climatol., 20 , 9851002.

  • Schönwiese, C. D., and J. Rapp, 1997: Climate Trend Atlas of Europe Based on Observations 1891–1990. Kluwer Academic Publishers, 228 pp.

    • Search Google Scholar
    • Export Citation
  • Schönwiese, C. D., J. Rapp, T. Fuchs, and M. Denhard, 1994: Observed climate trends in Europe 1891-1990. Meteor. Z., 3 , 2228.

  • Souch, C., and C. S. B. Grimmond, 2004: Applied climatology: ‘Heat waves.’. Prog. Phys. Geogr., 28 , 599606.

  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23 , 16741687.

  • Sun, D., and I. M. Held, 1996: A comparison of modeled and observed relationships between interannual variations of water vapor and temperature. J. Climate, 9 , 665675.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 25 pp.

  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110 .D18105, doi:10.1029/2004JD005753.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999a: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12 , 13681381.

  • Trenberth, K. E., 1999b: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42 , 327339.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2005: Uncertainty in hurricanes and global warming. Science, 308 , 17531754.

  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24 , 741758.

    • Search Google Scholar
    • Export Citation
  • van Wijngaarden, W. A., and L. A. Vincent, 2005: Examination of discontinuities in hourly surface relative humidity in Canada during 1953-2003. J. Geophys. Res., 110 .D22102, doi:10.1029/2005JD005925.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., X. Zhang, B. R. Bonsal, and W. D. Hogg, 2002: Homogenization of daily temperatures over Canada. J. Climate, 15 , 13221334.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., W. A. van Wijngaarden, and R. Hopkinson, 2007: Temperature and humidity trends in Canada for 1953–2005. J. Climate, 20 , 51005113.

    • Search Google Scholar
    • Export Citation
  • Wang, J. X. L., and D. J. Gaffen, 2001: Late-twentieth-century climatology and trends of surface humidity and temperature in China. J. Climate, 14 , 28332845.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27 , 1738. doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Willett, K. M., 2007: Creation and analysis of HadCRUH: A new global surface humidity dataset. Climatic Research Unit, School of Environmental Sciences, University of East Anglia, 174 pp.

  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to anthropogenic influence. Nature, 449 , 710712.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and D. Sun, 2006: Response of water vapor and clouds to El Niño warning in three National Center for Atmospheric Research atmospheric models. J. Geophys. Res., 111 .D17103, doi:10.1029/2005JD006700.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448 , 461465.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 840 379 110
PDF Downloads 422 145 11

Recent Changes in Surface Humidity: Development of the HadCRUH Dataset

Katharine M. WillettClimatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, and Met Office Hadley Centre, Exeter, United Kingdom, and Geology and Geophysics Department, Yale University, New Haven, Connecticut

Search for other papers by Katharine M. Willett in
Current site
Google Scholar
PubMed
Close
,
Philip D. JonesClimatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Philip D. Jones in
Current site
Google Scholar
PubMed
Close
,
Nathan P. GillettClimatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Nathan P. Gillett in
Current site
Google Scholar
PubMed
Close
, and
Peter W. ThorneMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peter W. Thorne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water vapor constitutes the most significant greenhouse gas, is a key driver of many atmospheric processes, and hence, is fundamental to understanding the climate system. It is a major factor in human “heat stress,” whereby increasing humidity reduces the ability to stay cool. Until now no truly global homogenized surface humidity dataset has existed with which to assess recent changes. The Met Office Hadley Centre and Climatic Research Unit Global Surface Humidity dataset (HadCRUH), described herein, provides a homogenized quality controlled near-global 5° by 5° gridded monthly mean anomaly dataset in surface specific and relative humidity from 1973 to 2003. It consists of land and marine data, and is geographically quasi-complete over the region 60°N–40°S.

Between 1973 and 2003 surface specific humidity has increased significantly over the globe, tropics, and Northern Hemisphere. Global trends are 0.11 and 0.07 g kg−1 (10 yr)−1 for land and marine components, respectively. Trends are consistently larger in the tropics and in the Northern Hemisphere during summer, as expected: warmer regions exhibit larger increases in specific humidity for a given temperature change under conditions of constant relative humidity, based on the Clausius–Clapeyron equation. Relative humidity trends are not significant when averaged over the landmass of the globe, tropics, and Northern Hemisphere, although some seasonal changes are significant.

A strong positive bias is apparent in marine humidity data prior to 1982, likely owing to a known change in reporting practice for dewpoint temperature at this time. Consequently, trends in both specific and relative humidity are likely underestimated over the oceans.

Corresponding author address: Katharine M. Willett, Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, United Kingdom. Email: kate.willett@metoffice.gov.uk

Abstract

Water vapor constitutes the most significant greenhouse gas, is a key driver of many atmospheric processes, and hence, is fundamental to understanding the climate system. It is a major factor in human “heat stress,” whereby increasing humidity reduces the ability to stay cool. Until now no truly global homogenized surface humidity dataset has existed with which to assess recent changes. The Met Office Hadley Centre and Climatic Research Unit Global Surface Humidity dataset (HadCRUH), described herein, provides a homogenized quality controlled near-global 5° by 5° gridded monthly mean anomaly dataset in surface specific and relative humidity from 1973 to 2003. It consists of land and marine data, and is geographically quasi-complete over the region 60°N–40°S.

Between 1973 and 2003 surface specific humidity has increased significantly over the globe, tropics, and Northern Hemisphere. Global trends are 0.11 and 0.07 g kg−1 (10 yr)−1 for land and marine components, respectively. Trends are consistently larger in the tropics and in the Northern Hemisphere during summer, as expected: warmer regions exhibit larger increases in specific humidity for a given temperature change under conditions of constant relative humidity, based on the Clausius–Clapeyron equation. Relative humidity trends are not significant when averaged over the landmass of the globe, tropics, and Northern Hemisphere, although some seasonal changes are significant.

A strong positive bias is apparent in marine humidity data prior to 1982, likely owing to a known change in reporting practice for dewpoint temperature at this time. Consequently, trends in both specific and relative humidity are likely underestimated over the oceans.

Corresponding author address: Katharine M. Willett, Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, United Kingdom. Email: kate.willett@metoffice.gov.uk

Save