Comparison of Radiosonde and GCM Vertical Temperature Trend Profiles: Effects of Dataset Choice and Data Homogenization

John R. Lanzante NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by John R. Lanzante in
Current site
Google Scholar
PubMed
Close
and
Melissa Free NOAA/Air Resources Laboratory, Silver Spring, Maryland

Search for other papers by Melissa Free in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In comparisons of radiosonde vertical temperature trend profiles with comparable profiles derived from selected Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) general circulation models (GCMs) driven by major external forcings of the latter part of the twentieth century, model trends exhibit a positive bias relative to radiosonde trends in the majority of cases for both time periods examined (1960–99 and 1979–99). Homogeneity adjustments made in the Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC) and Hadley Centre Atmospheric Temperatures, version 2 (HadAT2), radiosonde datasets, which are applied by dataset developers to account for time-varying biases introduced by historical changes in instruments and measurement practices, reduce the relative bias in most cases. Although some differences were found between the two observed datasets, in general the observed trend profiles were more similar to one another than either was to the GCM profiles.

In the troposphere, adjustment has a greater impact on improving agreement of the shapes of the trend profiles than on improving agreement of the layer mean trends, whereas in the stratosphere the opposite is true. Agreement between the shapes of GCM and radiosonde trend profiles is generally better in the stratosphere than the troposphere, with more complexity to the profiles in the latter than the former. In the troposphere the tropics exhibit the poorest agreement between GCM and radiosonde trend profiles, but also the largest improvement in agreement resulting from homogeneity adjustment.

In the stratosphere, radiosonde trends indicate more cooling than GCMs. For the 1979–99 period, a disproportionate amount of this discrepancy arises several months after the eruption of Mount Pinatubo, at which time temperatures in the radiosonde time series cool abruptly by ∼0.5 K compared to those derived from GCMs, and this difference persists to the end of the record.

* Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/2008JCLI2287.s1

Corresponding author address: John R. Lanzante, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: john.lanzante@noaa.gov

Abstract

In comparisons of radiosonde vertical temperature trend profiles with comparable profiles derived from selected Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) general circulation models (GCMs) driven by major external forcings of the latter part of the twentieth century, model trends exhibit a positive bias relative to radiosonde trends in the majority of cases for both time periods examined (1960–99 and 1979–99). Homogeneity adjustments made in the Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC) and Hadley Centre Atmospheric Temperatures, version 2 (HadAT2), radiosonde datasets, which are applied by dataset developers to account for time-varying biases introduced by historical changes in instruments and measurement practices, reduce the relative bias in most cases. Although some differences were found between the two observed datasets, in general the observed trend profiles were more similar to one another than either was to the GCM profiles.

In the troposphere, adjustment has a greater impact on improving agreement of the shapes of the trend profiles than on improving agreement of the layer mean trends, whereas in the stratosphere the opposite is true. Agreement between the shapes of GCM and radiosonde trend profiles is generally better in the stratosphere than the troposphere, with more complexity to the profiles in the latter than the former. In the troposphere the tropics exhibit the poorest agreement between GCM and radiosonde trend profiles, but also the largest improvement in agreement resulting from homogeneity adjustment.

In the stratosphere, radiosonde trends indicate more cooling than GCMs. For the 1979–99 period, a disproportionate amount of this discrepancy arises several months after the eruption of Mount Pinatubo, at which time temperatures in the radiosonde time series cool abruptly by ∼0.5 K compared to those derived from GCMs, and this difference persists to the end of the record.

* Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/2008JCLI2287.s1

Corresponding author address: John R. Lanzante, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: john.lanzante@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 0.98 MB)
Save
  • Brohan, P., J. J. Kennedy, I. Haris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111 .D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and P. Mde F. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6 , 53695380.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. M. H. Sexton, D. J. Karoly, C. E. Johnson, D. P. Rowell, and D. E. Parker, 1998: Influences of anthropogenic and oceanic forcing on recent climate change. Geophys. Res. Lett., 25 , 353356.

    • Search Google Scholar
    • Export Citation
  • Free, M., J. K. Angell, I. Durre, J. R. Lanzante, T. C. Peterson, and D. J. Seidel, 2004: Using first differences to reduce inhomogeneity in radiosonde temperature datasets. J. Climate, 17 , 41714179.

    • Search Google Scholar
    • Export Citation
  • Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new dataset of large-area anomaly time series. J. Geophys. Res., 110 .D22101, doi:10.1029/2005JD006169.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., 1994: Temporal inhomogeneities in radiosonde temperature records. J. Geophys. Res., 99 , 36673676.

  • Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res., 107 .4347, doi:10.1029/2001JD001143.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., and K. P. Shine, 2003: A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Climate, 16 , 35253534.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., S. J. Hassol, C. D. Miller, and W. L. Murray, 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. U.S. Climate Change Science Program and the Subcommittee on Global Change Research Final Report, Synthesis and Assessment Product 1.1, 180 pp. [Available online at http://www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm.].

  • Karoly, D. J., 1987: Southern Hemisphere temperature trends: A possible greenhouse gas effect? Geophys. Res. Lett., 14 , 11391141.

  • Karoly, D. J., 1989: Northern Hemisphere temperature trends: A possible greenhouse gas effect? Geophys. Res. Lett., 16 , 465468.

  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16 , 11971226.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 2007: Diagnosis of radiosonde vertical temperature trend profiles: Comparing the influence of data homogenization versus model forcings. J. Climate, 20 , 53565364.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003a: Temporal homogenization of monthly radiosonde temperature data. Part I: Methodology. J. Climate, 16 , 224240.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003b: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison. J. Climate, 16 , 241262.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and V. Ramanathan, 1980: Detecting climate change due to increasing carbon dioxide. Science, 209 , 763768.

  • McCarthy, M. P., H. A. Titchner, P. W. Thorne, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2008: Assessing bias and uncertainty in the HadAT-adjusted radiosonde climate record. J. Climate, 21 , 817832.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2000: Reconciling Observations of Global Temperature Change. National Academy Press, 85 pp.

  • Parker, D. E., M. Gordon, D. P. N. Cullum, D. M. H. Sexton, C. K. Folland, and N. Rayner, 1997: A new global gridded radiosonde temperature database and recent temperature trends. Geophys. Res. Lett., 24 , 14991502.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311 , 11381141.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2006: Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. J. Climate, 19 , 20942104.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382 , 3946.

  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106 , D22. 2803328059.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Influence of satellite data uncertainties on the detection of externally forced climate change. Science, 300 , 12801284.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309 , 15511556.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and J. R. Lanzante, 2004: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res., 109 .D14108, doi:10.1029/2003JD004414.

    • Search Google Scholar
    • Export Citation
  • Sexton, D. M. H., D. P. Rowell, C. K. Folland, and D. J. Karoly, 2001: Detection of anthropogenic climate change using an atmospheric GCM. Climate Dyn., 17 , 669685.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J. R. Lanzante, and C. L. Meyer, 2005: Radiosonde daytime biases and late-20th Century warming. Science, 309 , 15561559.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., C. L. Meyer, R. J. Allen, and H. A. Titchner, 2008: Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J. Climate, 21 , 53365352.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Siegel, S., and N. Castellan, 1988: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, 399 pp.

  • Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101 , D3. 67136728.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and S. F. B. Tett, 1998: Scale-dependent detection of climate change. J. Climate, 11 , 32823294.

  • Stott, P. A., G. S. Jones, J. A. Lowe, P. Thorne, C. Durman, T. C. Johns, and J-C. Thelen, 2006: Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. J. Climate, 19 , 27632782.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., J. F. B. Mitchell, D. E. Parker, and M. R. Allen, 1996: Human influence on the atmospheric vertical temperature structure: Detection and observations. Science, 274 , 11701173.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107 .4306, doi:10.1029/2000JD000028.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and Coauthors, 2003: Probable causes of late twentieth century tropospheric temperature trends. Climate Dyn., 21 , 7–8. 573591.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110 .D18105, doi:10.1029/2004JD005753.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 Global Coupled Climate Models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • WMO, 2006: Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project, Report 50, 662 pp.

  • Zar, J. H., 1996: Biostatistical Analysis. 3rd ed. Prentice Hall, 572 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 702 515 228
PDF Downloads 134 42 4